首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   411篇
  免费   17篇
  国内免费   8篇
安全科学   6篇
废物处理   17篇
环保管理   80篇
综合类   69篇
基础理论   127篇
污染及防治   82篇
评价与监测   33篇
社会与环境   15篇
灾害及防治   7篇
  2023年   3篇
  2021年   7篇
  2020年   4篇
  2019年   6篇
  2018年   6篇
  2017年   7篇
  2016年   25篇
  2015年   13篇
  2014年   11篇
  2013年   49篇
  2012年   16篇
  2011年   22篇
  2010年   13篇
  2009年   17篇
  2008年   15篇
  2007年   20篇
  2006年   22篇
  2005年   18篇
  2004年   8篇
  2003年   17篇
  2002年   13篇
  2001年   10篇
  2000年   11篇
  1999年   5篇
  1998年   4篇
  1997年   7篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1992年   2篇
  1991年   7篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   6篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1980年   6篇
  1979年   2篇
  1974年   2篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1967年   4篇
  1938年   1篇
  1924年   1篇
排序方式: 共有436条查询结果,搜索用时 15 毫秒
41.
Abstract: Despite growing concern, no consensus has emerged over the effects of habitat modification on species diversity in tropical forests. Even for comparatively well-studied taxa such as Lepidoptera, disturbance has been reported to increase and decrease diversity with approximately equal frequency. Species diversity within landscapes depends on the spatial scale at which communities are sampled, and the effects of disturbance in tropical forests have been studied at a wide range of spatial scales. Yet the question of how disturbance affects diversity at different spatial scales has not been addressed. We reanalyzed data from previous studies to examine the relationship between spatial scale and effects of disturbance on tropical-forest Lepidoptera. Disturbance had opposite effects on diversity at large and small scales: as scale decreased, the probability of a positive effect of disturbance on diversity increased. We also explicitly examined the relationship between spatial scale and the diversity of butterflies in selectively logged and unlogged forest in Maluku Province, Indonesia. Species richness increased with spatial scale in both logged and unlogged forest, but at a significantly faster rate in unlogged forest, whereas species evenness increased with scale in unlogged forest but did not increase with scale in logged forest. These data indicate that the effects of habitat modification on species diversity are heavily scale-dependent. As a result, recorded effects of disturbance were strongly influenced by the spatial scale at which species assemblages were sampled. Future studies need to account for this by explicitly examining the effects of disturbance at a number of different spatial scales. A further problem arises because the relationship between scale and diversity is likely to differ among taxa in relation to mobility. This may explain to some extent why the measured effects of disturbance have differed between relatively mobile and immobile taxa.  相似文献   
42.
43.
Tourism infrastructure such as walking tracks can have negative effects on vegetation including in mountain regions. In the alpine area around continental Australia's highest mountain, Mt Kosciuszko (2228 m), there is a range of walking tracks (paved, gravel and raised steel mesh surfaces) in addition to an extensive network of informal/non-hardened tracks. Vegetation characteristics were compared between track types on/under tracks, on the track verge, and in the adjacent native vegetation. For a raised steel mesh walkway there was no difference in vegetation under the walkway, on the verge, and 3m away. In contrast, for a non-hardened track there was 35% bare ground on the track surface but no other detectable impacts. Gravel and paved tracks had distinct verges largely comprising bare ground and exotic species. For non-hardened tracks there was an estimated 270 m2 of disturbance per km of track. For wide gravel tracks the combined area of bare ground, exotic plants and gravel was estimated as 4290 m2 per km, while for narrow gravel tracks it was estimated as 2940 m2 per km. For paved tracks there was around 2680 m2 per km of damage. In contrast, there was no detectable effect of raised steel mesh walkway on vegetation highlighting some of the benefits of this surface over other track types.  相似文献   
44.
This paper develops a methodology for integrating a land-use forecasting model with an event scale, rainfall-runoff model in support of improving land-use policy formulation at the watershed scale. The models selected for integration are loosely coupled, structured upon a common GIS platform that facilitates data exchange. The hydrologic model HEC-HMS is calibrated for a specific storm event that occurred within central Washington State. The land-use forecasting model, What If? is implemented to forecast future spatial distributions of low-density residential land-uses under low and high population growth estimates. Forecasted land-use distribution patterns for the years 2015, 2025, and 2050 are then used as land-use data input for the calibrated hydrologic model, keeping all other parameters constant. Impacts to the stream discharge hydrograph are predicted as the study area becomes increasingly developed as forecasted by What If?. The initial results of this integration process demonstrate the synergy that can be generated through the linkage of the selected models. The ability to quantifiably forecast the potential hydrologic implications of proposed land-use policies before their implementation offers land-use decision-makers a valuable tool for discerning which proposed land-use alternatives will be effective at minimizing storm water runoff.  相似文献   
45.
Impacts of land cover on stream hydrology in the West Georgia Piedmont, USA   总被引:1,自引:0,他引:1  
The southeastern United States is experiencing rapid urban development. Consequently, Georgia's streams are experiencing hydrologic alterations from extensive development and from other land use activities such as livestock grazing and silviculture. A study was performed to assess stream hydrology within 18 watersheds ranging from 500 to 2500 ha. Study streams were first, second, or third order and hydrology was continuously monitored from 29 July 2003 to 23 September 2004 using InSitu pressure transducers. Rating curves between stream stage (i.e., water depth) and discharge were developed for each stream by correlating biweekly discharge measurements and stage data. Dependent variables were calculated from discharge data and placed into 4 categories: flow frequency (i.e., the number of times a predetermined discharge threshold is exceeded), flow magnitude (i.e., maximum and minimum flows), flow duration (i.e., the amount of time discharge was above or below a predetermined threshold), and flow predictability and flashiness. Fine resolution data (i.e., 15-min interval) were also compared to daily discharge data to determine if resolution affected how streams were classified hydrologically. Urban watersheds experienced flashy discharges during storm events, whereas pastoral and forested watersheds showed less flashy hydrographs. Also, in comparison to all other flow variables, flow frequency measures were most strongly correlated to land cover. Furthermore, the stream hydrology was explained similarly with both the 15-min and daily data resolutions.  相似文献   
46.
47.
Eutrophication, harmful algal blooms, and human health impacts are critical environmental challenges resulting from excess nitrogen and phosphorus in surface waters. Yet we have limited information regarding how wetland characteristics mediate water quality across watershed scales. We developed a large, novel set of spatial variables characterizing hydrological flowpaths from wetlands to streams, that is, “wetland hydrological transport variables,” to explore how wetlands statistically explain the variability in total nitrogen (TN) and total phosphorus (TP) concentrations across the Upper Mississippi River Basin (UMRB) in the United States. We found that wetland flowpath variables improved landscape-to-aquatic nutrient multilinear regression models (from R2 = 0.89 to 0.91 for TN; R2 = 0.53 to 0.84 for TP) and provided insights into potential processes governing how wetlands influence watershed-scale TN and TP concentrations. Specifically, flowpath variables describing flow-attenuating environments, for example, subsurface transport compared to overland flowpaths, were related to lower TN and TP concentrations. Frequent hydrological connections from wetlands to streams were also linked to low TP concentrations, which likely suggests a nutrient source limitation in some areas of the UMRB. Consideration of wetland flowpaths could inform management and conservation activities designed to reduce nutrient export to downstream waters.  相似文献   
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号