首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   319篇
  免费   11篇
安全科学   11篇
废物处理   12篇
环保管理   52篇
综合类   22篇
基础理论   112篇
污染及防治   71篇
评价与监测   36篇
社会与环境   13篇
灾害及防治   1篇
  2023年   2篇
  2021年   1篇
  2020年   6篇
  2019年   4篇
  2018年   4篇
  2017年   7篇
  2016年   8篇
  2015年   11篇
  2014年   13篇
  2013年   28篇
  2012年   10篇
  2011年   23篇
  2010年   10篇
  2009年   15篇
  2008年   19篇
  2007年   16篇
  2006年   23篇
  2005年   7篇
  2004年   12篇
  2003年   13篇
  2002年   8篇
  2001年   6篇
  2000年   8篇
  1999年   3篇
  1998年   5篇
  1997年   7篇
  1996年   7篇
  1995年   8篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1977年   2篇
  1972年   2篇
  1968年   1篇
  1964年   1篇
  1961年   1篇
排序方式: 共有330条查询结果,搜索用时 15 毫秒
281.
Remediation developed a Sustainable Remediation Panel in the Summer 2009 issue, which featured the Sustainable Remediation Forum White Paper. The panel is composed of leaders in the field of sustainable remediation who have volunteered to provide their opinions on difficult subjects related to the topic of how to integrate sustainability principles into the remediation practice. The panel's opinions are provided in a question‐and‐answer format, whereby selected experts provide an answer to a question. This issue's question is provided below, followed by opinions from five experts in the remediation field.
相似文献   
282.
An interactive spreadsheet model has been created for quantitative predictions of propanil sorption and reaction in a slurried Manitoba clay soil. Based on experimental values for the numbers of empty and filled sorption sites as reactants and products, the reaction mechanism has been described with conventional chemical kinetics. The on line HPLC μ extraction method revealed labile sorption, intraparticle diffusion, and a chemical reaction. Laidler's integral rate law for second order kinetics describes the labile sorption. Desorption, intraparticle diffusion, and the chemical reaction are all described by first order kinetics. The time dependent effects of initial concentration and amount of slurried soil can be predicted for sorption, intraparticle diffusion, and the amount of reaction product. Suggested applications include storm runoff and inputs for fate and transport hydrology models.  相似文献   
283.
In mountainous landscapes with high climatic and geomorphic variability, how do rural land uses and exurbanization alter hydrology and water quality? We evaluated effects of rural land use and exurbanization on streamflows, suspended sediment concentrations and loads, specific conductance, and summer water temperatures in 12 streams and rivers within the Upper Little Tennessee River basin in the southern Appalachian Mountains. Eleven streams featured low levels of development (>61% forest cover) but differed in land use patterning, basin size, annual precipitation, and watershed morphology. One urban stream, located within the largest town in the basin, provided the high development comparative endpoint. Even low levels of rural development and exurbanization were associated with substantial increases in suspended sediment concentrations, sediment loads, and summer stream temperature daily maxima and diurnal variation. Observed summer temperature increases were much larger than would be expected due to global climate change over the next century. Specific conductance was idiosyncratic among the smaller streams. These water quality changes were not accompanied by streamflow changes that were discernible amid the high natural variation in precipitation and geomorphology. The water quality findings suggest the need for applying the best management practices, including riparian buffers, to even low levels of rural development.  相似文献   
284.
Webster EM  Ellis DA 《Chemosphere》2012,87(4):404-412
Biotransformation is widely recognized as the most important and most uncertain determinant of bioaccumulation. A step-wise method for estimating organism-specific biotransformation half-lives from field observations and using established food web modeling is developed. As a proof of concept, the method is applied to the case of nine polycyclic aromatic hydrocarbons (PAHs) in a well-studied food web in Bohai Bay, China. The estimated half-lives are in good agreement with the existing literature. The proposed biotransformation estimation method, through data mining, for sufficiently defined ecosystems, may greatly reduce the necessary animal testing involved in chemical assessments by providing useful guidance to experimentalists and regulators.  相似文献   
285.
It is difficult to quantify the range in source strength reduction (MdR) that may be attainable from in situ remediation of a dense nonaqueous‐phase liquid (DNAPL) site given that available studies typically report only the median MdR without providing insights into site complexity, which is often a governing factor. An empirical study of the performance of in situ remediation at a wide range of DNAPL‐contaminated sites determined MdRs for in situ bioremediation (EISB), in situ chemical oxidation (ISCO), and thermal treatment remedies. Median MdR, geometric mean MdR, and lower/upper 95 percent confidence interval for the mean were: 49x, 105x, 20x/556x, respectively, for EISB; 9x, 21x, and 4x/110x for ISCO; and 19x, 31x, and 6x/150x for thermal treatment. Lower MdR values were determined for large, complex sites and for sites with DNAPL pool‐dominated source zones. A feasibility analysis of partial DNAPL depletion is described for a pool‐dominated source zone. Back‐diffusion from low‐hydraulic conductivity units within a pool‐dominated source zone is shown to potentially sustain a secondary source for more than 1,000 years, indicating that aggressive source treatment may not reduce the remediation timeframe. Estimated plume response demonstrates there may be no reduction in cost associated with aggressive treatment, and little difference in risk reduction associated with the various alternatives. Monitored natural attenuation (MNA) for the source zone is shown to be a reasonable alternative for the pool‐dominated source zone considered in this example. It is demonstrated that pool‐dominated source zones with a large range in initial DNAPL mass (250 to 1,500 kg) may correspond to a narrow range in source strength (20 to 30 kg/year). This demonstrates that measured source strength is nonunique with respect to DNAPL mass in the subsurface and, thus, source strength should not be used as the sole basis for predicting how much DNAPL mass remains or must be removed to achieve a target goal. If aggressive source zone treatment is to be implemented due to regulatory requirements, strategic pump‐and‐treat is shown to be most cost effective. These remedial decisions are shown to be insensitive to a range of possible DNAPL pool conditions. At sites with an existing pump‐and‐treat system, a significant increase in mass removal and source strength reduction may be achieved for a low incremental cost by strategic placement of extraction wells and pumping rate selection. © 2014 Wiley Periodicals, Inc.  相似文献   
286.
The remediation of per‐ and polyfluoroalkyl substances by injection of colloidal activated carbon (CAC) at a contaminated site in Central Canada was evaluated using various visualization and modeling methods. Radial diagrams were used to illustrate spatial and temporal trends in perfluoroalkyl acid (PFAA) concentrations, as well as various redox indicators. To assess the CAC adsorption capacity for perfluorooctane sulfonate (PFOS), laboratory Freundlich isotherms were derived for PFOS mixed with CAC in two solutions: (1) PFOS in a pH 7.5 synthetic water that was buffered by 1 millimolar NaHCO3 (Kf = 142,800 mg1‐a La/kg and = 0.59); and (2) a groundwater sample (pH = 7.4) containing PFOS among other PFAS from a former fire‐training area in the United States (Kf = 4,900 mg1‐a La/kg and a = 0.24). A mass balance approach was derived to facilitate the numerical modeling of mass redistribution after CAC injection, when mass transitions from a two‐phase system (aqueous and sorbed to organic matter) to a three‐phase system that also includes mass sorbed to CAC. An equilibrium mixing model of mass accumulation over time was developed using a finite‐difference solution and was verified by intermodel comparison for prediction of CAC longevity in the center of a source area. A three‐dimensional reactive transport model (ISR‐MT3DMS) was used to indicate that the CAC remedy implemented at the site is likely to be effective for PFOS remediation for decades. Model results are used to recommend remedial design and monitoring alternatives that account for the uncertainty in long‐term performance predictions.  相似文献   
287.
Simulation of back‐diffusion remediation timeframe for thin silt/clay layers, or when contaminant degradation is occurring, typically requires the use of a numerical model. Given the centimeter‐scale vertical grid spacing required to represent diffusion‐dominated transport, simulation of back‐diffusion in a 3‐D model may be computationally prohibitive. Use of a local 1‐D model domain approach for simulating back‐diffusion is demonstrated to have advantages but is limited to only some applications. Incorporation of a local domain approach for simulating back‐diffusion in a new model, In Situ Remediation‐MT3DMS (ISR‐MT3DMS) is validated based on a benchmark with MT3DMS and comparisons with a highly discretized finite difference numerical model. The approach used to estimate the vertical hydrodynamic dispersion coefficient is shown to have a significant influence on the simulated flux into and out of silt/clay layers in early time periods. Previously documented back‐diffusion at a Florida site is modeled for the purpose of evaluating the sensitivity of the back‐diffusion controlled remediation timeframe to various site characteristics. A base case simulation with a clay lens having a thickness of 0.2 m and a length of 100 m indicates that even after 99.96 percent aqueous TCE removal from the clay lens, the down‐gradient concentrations still exceed the MCL in groundwater monitoring wells. This shows that partial mass reduction from a NAPL source zone via in situ treatment may have little benefit for the long‐term management of contaminated sites, given that back‐diffusion will sustain a groundwater plume for a long period of time. Back‐diffusion model input parameters that have the greatest influence on remediation timeframe and thus may warrant more attention during field investigations, include the thickness of silt/clay lenses, retardation coefficient representing sorbed mass in silt/clay, and the groundwater velocity in adjacent higher permeability zones. Therefore, pump‐and‐treat systems implemented for the purpose of providing containment may have an additional benefit of reducing back‐diffusion remediation timeframe due to enhanced transverse advective fluxes at the sand/clay interface. Remediation timeframes are also moderately sensitive to the length of the silt/clay layers and transverse vertical dispersivity, but are less sensitive to degradation rates within silt/clay, contaminant solubility, contact time, tortuosity coefficient, and monitoring well‐screen length for the scenarios examined. ©2015 Wiley Periodicals, Inc.  相似文献   
288.
289.
ABSTRACT

Recent epidemiological studies have consistently shown that the acute mortality effects of high concentrations of ambient particulate matter (PM), documented in historic air pollution episodes, may also be occurring at the low to moderate concentrations of ambient PM found in modern urban areas. In London in December 1952, the unexpected deaths due to PM exposure could be identified and counted as integers by the coroners. In modern times, the PM-related deaths cannot be as readily identified, and they can only be inferred as fractional average daily increases in mortality rates using sophisticated statistical filtering and analyses of the air quality and mortality data. The causality of the relationship between exposure to ambient PM and acute mortality at these lower modern PM concentrations has been questioned because of a perception that there is little significant correlation in time between the ambient PM concentrations and measured personal exposure to PM from all sources (ambient PM plus indoor-generated PM).

This article shows that the critical factor supporting the plausibility of a linear PM mortality relationship is the expected high correlation in time of people's exposure to PM of ambient origin with measured ambient PM concentrations, as used in the epidemiological time series studies. The presence of indoor and personal sources of PM masks this underlying relationship, leading to confusion in the scientific literature about the strong underlying temporal relationship between personal exposure to PM of ambient origin and ambient PM concentration. The authors show that the sources of PM of non-ambient origin operate independently of the ambient PM concentrations, so that the mortality effect of non-ambient PM, if any, must be independent of the effects of the ambient PM exposures.  相似文献   
290.
Methane (CH4) is the dominant greenhouse gas emitted by animal agriculture manure. Since the gas is relatively insoluble in water, it is concentrated in discrete bubbles that rise through waste lagoons and burst at the surface. This results in lagoon emissions that are inhomogeneous in both space and time. Emissions from a midwestern dairy waste lagoon were measured over 2 weeks to evaluate the spatial homogeneity of the source emissions and to compare two methods for measuring this inhomogeneous emission. Emissions were determined using an inverse dispersion model based on CH4 concentrations measured both by a single scanning tunable diode laser (TDL) aimed at a series of reflectors and by flame ionization detection (FID) gas chromatography on line-sampled air. Emissions were best estimated using scanned TDL concentrations over relatively short optical paths that collectively span the entire cross-wind width of the source, so as to provide both the best capture of discrete plumes from the bursting bubbles on the lagoon surface and the best detection of CH4 background concentrations. The lagoon emissions during the study were spatially inhomogeneous at hourly time scales. Partitioning the inhomogeneous source into two source regions reduced the estimated emissions of the overall lagoon by 57% but increased the variability. Consequently, it is important to assess the homogeneity of a source prior to measurements and final emissions calculation.

Implications: Plans for measuring methane emissions from waste lagoons must take into account the spatial inhomogeneity of the source strength. The assumption of emission source homogeneity for a low-solubility gas such as CH4 emitted from an animal waste lagoon can result in significant emission overestimates. The entire breadth and length of the area source must be measured, preferably with multiple optical paths, for the detection of discrete plumes from the different emitting regions and for determining the background concentration. Other gases with similarly poor solubility in water may also require partitioning of the lagoon source area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号