In this study, a multi-level-factorial risk-inference-based possibilistic-probabilistic programming (MRPP) method is proposed for supporting water quality management under multiple uncertainties. The MRPP method can handle uncertainties expressed as fuzzy-random-boundary intervals, probability distributions, and interval numbers, and analyze the effects of uncertainties as well as their interactions on modeling outputs. It is applied to plan water quality management in the Xiangxihe watershed. Results reveal that a lower probability of satisfying the objective function (θ) as well as a higher probability of violating environmental constraints (qi) would correspond to a higher system benefit with an increased risk of violating system feasibility. Chemical plants are the major contributors to biological oxygen demand (BOD) and total phosphorus (TP) discharges; total nitrogen (TN) would be mainly discharged by crop farming. It is also discovered that optimistic decision makers should pay more attention to the interactions between chemical plant and water supply, while decision makers who possess a risk-averse attitude would focus on the interactive effect of qi and benefit of water supply. The findings can help enhance the model’s applicability and identify a suitable water quality management policy for environmental sustainability according to the practical situations.
The use of a honeycomb zeolite concentrator and an oxidation process is one of the most popular methods demonstrated to control volatile organic compound (VOCs) emissions from waste gases in semiconductor manufacturing plants. This study attempts to characterize the performance of a concentrator in terms of the removal efficiencies of semiconductor VOCs (isopropyl alcohol [IPA], acetone, propylene glycol methyl ether [PGME], and propylene glycol monomethyl ether acetate [PGMEA]) under several parameters that govern the actual operations. Experimental results indicated that at inlet temperatures of under 40 degrees C and a relative humidity of under 80%, the removal efficiency of a zeolite concentrator can be maintained well over 90%. The optimal rotation speed of the concentrator is between 3 and 4.5 rph in this study. The optimal rotation speed increases with the VOCs inlet concentration. Furthermore, reducing the concentration ratio helps to increase the removal efficiency, but it also increases the incineration cost. With reference to competitive adsorption, PGMEA and PGME are more easily adsorbed on a zeolite concentrator than are IPA and acetone because of their high boiling points and molecular weights. 相似文献