首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14909篇
  免费   244篇
  国内免费   679篇
安全科学   491篇
废物处理   455篇
环保管理   2096篇
综合类   4314篇
基础理论   3396篇
环境理论   6篇
污染及防治   3845篇
评价与监测   676篇
社会与环境   425篇
灾害及防治   128篇
  2022年   188篇
  2021年   168篇
  2020年   118篇
  2019年   151篇
  2018年   199篇
  2017年   211篇
  2016年   286篇
  2015年   258篇
  2014年   320篇
  2013年   1136篇
  2012年   450篇
  2011年   586篇
  2010年   422篇
  2009年   512篇
  2008年   547篇
  2007年   590篇
  2006年   510篇
  2005年   382篇
  2004年   383篇
  2003年   436篇
  2002年   385篇
  2001年   507篇
  2000年   369篇
  1999年   262篇
  1998年   193篇
  1997年   182篇
  1996年   217篇
  1995年   202篇
  1994年   213篇
  1993年   204篇
  1992年   197篇
  1991年   190篇
  1990年   218篇
  1989年   197篇
  1988年   176篇
  1987年   166篇
  1986年   151篇
  1985年   165篇
  1984年   150篇
  1983年   159篇
  1982年   162篇
  1981年   165篇
  1980年   149篇
  1979年   145篇
  1978年   142篇
  1977年   129篇
  1976年   136篇
  1974年   142篇
  1973年   125篇
  1972年   125篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
871.
Switchgrass biochar affects two aridisols   总被引:1,自引:0,他引:1  
The use of biochar has received growing attention because of its ability to improve the physicochemical properties of highly weathered Ultisols and Oxisols, yet very little research has focused on its effects in Aridisols. We investigated the effect of low or high temperature (250 or 500°C) pyrolyzed switchgrass () biochar on two Aridisols. In a pot study, biochar was added at 2% w/w to a Declo loam (Xeric Haplocalcids) or to a Warden very fine sandy loam (Xeric Haplocambids) and incubated at 15% moisture content (by weight) for 127 d; a control (no biochar) was also included. Soils were leached with 1.2 to 1.3 pore volumes of deionized HO on Days 34, 62, 92, and 127, and cumulative leachate Ca, K, Mg, Na, P, Cu, Fe, Mn, Ni, Zn, NO-N, NO-N, and NH-N concentrations were quantified. On termination of the incubation, soils were destructively sampled for extractable Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Zn, NO-N, and NH-N, total C, inorganic C, organic C, and pH. Compared with 250°C, the 500°C pyrolysis temperature resulted in greater biochar surface area, elevated pH, higher ash content, and minimal total surface charge. For both soils, leachate Ca and Mg decreased with the 250°C switchgrass biochar, likely due to binding by biochar's functional group sites. Both biochars caused an increase in leachate K, whereas the 500°C biochar increased leachate P. Both biochars reduced leachate NO-N concentrations compared with the control; however, the 250°C biochar reduced NO-N concentrations to the greatest extent. Easily degradable C, associated with the 250°C biochar's structural make-up, likely stimulated microbial growth, which caused NO-N immobilization. Soil-extractable K, P, and NO-N followed a pattern similar to the leachate observations. Total soil C content increases were linked to an increase in organic C from the biochars. Cumulative results suggest that the use of switchgrass biochar prepared at 250°C could improve environmental quality in calcareous soil systems by reducing nutrient leaching potential.  相似文献   
872.
Vegetation type and density exhibited a considerable patchy distribution at very local scales in the Yellow River Delta, due to the spatial variation of soil salinity and water scarcity. We proposed that soil respiration is affected by the spatial variations in vegetation type and soil chemical properties and tested this hypothesis in three different vegetation patches (Phragmites australis, Suaeda heteroptera and bare soil) in winter (from November 2010 to April 2011). At diurnal scale, soil respiration all displayed single-peak curves and asymmetric patterns in the three vegetation patches; At seasonal scale, soil respiration all declined steadily until February, and then increased to a peak in next April. But, the magnitude of soil respiration showed significant differences among the three sites. Mean soil respiration rates in winter were 0.60, 0.45 and 0.17 μmol CO(2) m(-2) s(-1) for the Phragmites australis, Suaeda heteroptera and bare soil, respectively. The combined effect of soil temperature and soil moisture accounted for 58-68 % of the seasonal variation of winter soil respiration. The mean soil respiration revealed positive and linear correlations with total N, total N and SOC storages at 0-20 cm depth, and plant biomass among the three sites. We conclude that the patchy distribution of plant biomass and soil chemical properties (total C, total N and SOC) may affect decomposition rate of soil organic matter in winter, thereby leading to spatial variations in soil respiration.  相似文献   
873.
874.
Aquatic bryophytes, Hygrohypnum ochraceum, were deployed “in situ” at 14 sites in the Fountain Creek Watershed, spring and fall, 2007 to study selenium (Se) accumulation. Dissolved, total, and pore (sediment derived) water samples were collected and water quality parameters determined while plants were exposed to the water for 10?days. There was a trend showing plant tissue-Se uptake with distance downstream and we found a strong correlation between Se in the water with total hardness in both seasons. There was a modest association between Se-uptake in plants with hardness in the spring of 2007 but not the fall. Plants bioconcentrated Se from the water by a factor of 5.8?×?103 at Green Mountain Falls and 1.5?×?104 at Manitou Springs in the fall of 2007. Both are examples of the bioconcentration abilities of the plants, primarily in the upper reaches of the watershed where bioconcentration factors were highest. However, the mean minima and maxima of Se in the plants in each of the three watershed segments appeared similar during both seasons. We found direct relationships between the pore and dissolved Se in water in the spring (R 2?=?0.84) and fall (R 2?=?0.95) and dissolved Se and total hardness in the spring and fall (R 2?=?0.92). The data indicate that H. ochraceum was a suitable indicator of Se bioavailability and Se uptake in other trophic levels in the Fountain Creek Watershed based on a subsequent study of Se accumulation in fish tissues at all 14 sites.  相似文献   
875.
Denitrification is a critical biogeochemical process that results in the conversion of nitrate to volatile products, and thus is a major route of nitrogen loss from terrestrial environments. Riparian buffers are an important management tool that is widely utilized to protect water from non-point source pollution. However, riparian buffers vary in their nitrate removal effectiveness, and thus there is a need for mechanistic studies to explore nitrate dynamics in buffer soils. The objectives of this study were to examine the influence of specific types of soluble organic matter on nitrate loss and nitrous oxide production rates, and to elucidate the relationships between these rates and the abundances of functional genes in a riparian buffer soil. Continuous-flow soil column experiments were performed to investigate the effect of three types of soluble organic matter (citric acid, alginic acid, and Suwannee River dissolved organic carbon) on rates of nitrate loss and nitrous oxide production. We found that nitrate loss rates increased as citric acid concentrations increased; however, rates of nitrate loss were weakly affected or not affected by the addition of the other types of organic matter. In all experiments, rates of nitrous oxide production mirrored nitrate loss rates. In addition, quantitative polymerase chain reaction (qPCR) was utilized to quantify the number of genes known to encode enzymes that catalyze nitrite reduction (i.e., nirS and nirK) in soil that was collected at the conclusion of column experiments. Nitrate loss and nitrous oxide production rates trended with copy numbers of both nir and 16s rDNA genes. The results suggest that low-molecular mass organic species are more effective at promoting nitrogen transformations than large biopolymers or humic substances, and also help to link genetic potential to chemical reactivity.  相似文献   
876.
由于原广泛使用的北美燃烧器存在技术落后、安全保护措施欠缺、操作复杂、安全隐患多、节能和环保不达标等问题,为适应当前注汽锅炉安全可靠、高效经济和低污染排放的运行要求,国内稠油热采注汽锅炉逐步应用新型节能燃烧器。通过总结各类新型节能燃烧器在燃烧效率、控制理念、动态监测、节能环保、燃料保护等方面的技术性能,分析其具有燃烧效率高、节能环保、安全可靠、自动控制水平高等特点,并验证实际运行效果,展望工业燃烧器技术发展趋势,为指导燃烧器选型和技术管理提供依据和参考。  相似文献   
877.
引入投影降维的思想,将遗传投影寻踪与回归分析技术运用到城市环境质量评价中。将此技术与神经网络方法进行实例比较,投影寻踪回归方法不但可以合理地作出环境质量的综合评价,而且消除了神经网络方法中类别判断不够精确的影响。  相似文献   
878.
对辉县市城区2006—2011年间环境空气质量监测数据进行了评价,并对城区污染物浓度时空变化进行了分析。结果表明,辉县市城区大气污染主要表现为可吸入颗粒物污染严重,主要是能源结构不合理、锅炉废气污染严重、城区道路保洁方式落后等原因造成的,由此提出了合理规划城市布局、减少结构性污染等对策。  相似文献   
879.
Stone, Wesley W. and Robert J. Gilliom, 2012. Watershed Regressions for Pesticides (WARP) Models for Predicting Atrazine Concentrations in Corn Belt Streams. Journal of the American Water Resources Association (JAWRA) 48(5): 970‐986. DOI: 10.1111/j.1752‐1688.2012.00661.x Abstract: Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, are improved for application to the United States (U.S.) Corn Belt region by developing region‐specific models that include watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP‐CB) were developed for annual maximum moving‐average (14‐, 21‐, 30‐, 60‐, and 90‐day durations) and annual 95th‐percentile atrazine concentrations in streams of the Corn Belt region. The WARP‐CB models accounted for 53 to 62% of the variability in the various concentration statistics among the model‐development sites. Model predictions were within a factor of 5 of the observed concentration statistic for over 90% of the model‐development sites. The WARP‐CB residuals and uncertainty are lower than those of the National WARP model for the same sites. Although atrazine‐use intensity is the most important explanatory variable in the National WARP models, it is not a significant variable in the WARP‐CB models. The WARP‐CB models provide improved predictions for Corn Belt streams draining watersheds with atrazine‐use intensities of 17 kg/km2 of watershed area or greater.  相似文献   
880.
Moore, R.D. (Dan), J.W. Trubilowicz, and J.M. Buttle, 2011. Prediction of Streamflow Regime and Annual Runoff for Ungauged Basins Using a Distributed Monthly Water Balance Model. Journal of the American Water Resources Association (JAWRA) 48(1): 32‐42. DOI: 10.1111/j.1752‐1688.2011.00595.x Abstract: Prediction of streamflow in ungauged basins is a global challenge, but is particularly an issue in physiographically complex regions like British Columbia (BC), Canada. The objective of this study was to assess the accuracy of a simple water balance model that can be run using existing spatial datasets. The model was developed by modifying an existing monthly water balance model to account for interception loss from forest canopy, glacier melt, and evaporation from lakes. The model was run using monthly climate normals from the ClimateBC application, which have a horizontal resolution of 400 m. Each ClimateBC grid cell was classified as forest, open land, glacier or water surface based on provincial scale digital maps of biogeoclimatic zones, glaciers, and water. The output was monthly mean runoff from each grid cell. These values were integrated within the catchment boundaries for streams gauged by the Water Survey of Canada. Annual runoff was predicted with modest accuracy: after updating the predicted runoff by interpolating errors from neighboring gauged streams, the mean absolute error was 25.4% of the gauged value, and 52% of the streams had errors less than 20%. However, the model appears to be quite robust in distinguishing between pluvial, hybrid, and melt‐dominated hydroclimatic regimes, and therefore has promise as a tool for catchment classification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号