首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6049篇
  免费   483篇
  国内免费   2172篇
安全科学   530篇
废物处理   268篇
环保管理   507篇
综合类   3961篇
基础理论   1002篇
污染及防治   1546篇
评价与监测   374篇
社会与环境   272篇
灾害及防治   244篇
  2024年   21篇
  2023年   109篇
  2022年   311篇
  2021年   243篇
  2020年   264篇
  2019年   214篇
  2018年   251篇
  2017年   289篇
  2016年   268篇
  2015年   346篇
  2014年   437篇
  2013年   579篇
  2012年   494篇
  2011年   536篇
  2010年   435篇
  2009年   420篇
  2008年   443篇
  2007年   400篇
  2006年   372篇
  2005年   314篇
  2004年   238篇
  2003年   246篇
  2002年   227篇
  2001年   222篇
  2000年   193篇
  1999年   168篇
  1998年   131篇
  1997年   93篇
  1996年   77篇
  1995年   106篇
  1994年   62篇
  1993年   50篇
  1992年   42篇
  1991年   33篇
  1990年   20篇
  1989年   12篇
  1988年   8篇
  1987年   6篇
  1986年   7篇
  1985年   4篇
  1984年   1篇
  1983年   5篇
  1982年   3篇
  1976年   1篇
  1972年   2篇
  1964年   1篇
排序方式: 共有8704条查询结果,搜索用时 409 毫秒
621.
不同流量分配比对多级A/O工艺去除有机物及脱氮的影响   总被引:1,自引:0,他引:1  
采用三级A/O工艺分段进水工艺处理低碳源生活污水,考察了进水流量分配比对系统去除有机物、硝化反硝化能力以及去除TN的影响。通过对水质指标沿程监测结果表明,不同流量分配比(4∶3∶3,5∶3∶2,6∶3∶1)对系统去除有机物及硝化效率影响不大,出水COD、氨氮分别均在30 mg/L、1 mg/L以下。但反硝化效果受流量分配比的影响较大,在流量比为5∶3∶2时,有效利用原水中碳源进行反硝化,反硝化效果最好。在流量比为5∶3∶2的情况下,TN出水为5.7 mg/L去除率为82.9%,优于流量分配比为6∶3∶1和4∶3∶3时的脱氮效果。总体而言,分段进水工艺在对碳源的有效利用及能耗节省方面优于单点进水。  相似文献   
622.
利用响应面优化实验设计方法对CCl4增强超声降解左旋氧氟沙星模拟废水的影响因素进行探讨和分析,考察了溶液初始pH值、超声功率、左旋氧氟沙星初始浓度的影响。应用Box-Behnken中心组合设计得到一个二次多项式数学模型,确定了US/CCl4降解左旋氧氟沙星的优化条件:初始pH值6.8,超声功率189 W,左旋氧氟沙星初始浓度为5 mg/L时,左旋氧氟沙星的去除率达到最大(82.99%)。经实验验证, 实际值与模型预测值吻合性良好,偏差仅为0.036%。  相似文献   
623.
乔斌  温高  张子敬  张宏 《化工环保》2013,33(1):87-89
建立了以铬黑T为指示剂,乙二胺四乙酸二钠反滴定过量BaCl2的碱式硫酸铝溶液中SO42-的测定方法。实验确定的操作条件为:待测试样稀释后ρ(SO42-)为0.025 ~0.100 g/L,BaCl2过量率为25%~100%,并且在加入BaCl2前将试样煮沸,三乙醇胺加入量为0.10 L/L。该法回收率在98.90%~100.72%,相对标准偏差小于1%。测定方法准确,可靠,且操作简便、快速。  相似文献   
624.
Chlorination of chlortoluron: kinetics, pathways and chloroform formation   总被引:1,自引:0,他引:1  
Xu B  Tian FX  Hu CY  Lin YL  Xia SJ  Rong R  Li DP 《Chemosphere》2011,83(7):909-916
Chlortoluron chlorination is studied in the pH range of 3-10 at 25 ± 1 °C. The chlorination kinetics can be well described by a second-order kinetics model, first-order in chlorine and first-order in chlortoluron. The apparent rate constants were determined and found to be minimum at pH 6, maximum at pH 3 and medium at alkaline conditions. The rate constant of each predominant elementary reactions (i.e., the acid-catalyzed reaction of chlortoluron with HOCl, the reaction of chlortoluron with HOCl and the reaction of chlortoluron with OCl) was calculated as 3.12 (± 0.10) × 107 M−2 h−1, 3.11 (±0.39) × 102 M−1 h−1 and 3.06 (±0.47) × 103 M−1 h−1, respectively. The main chlortoluron chlorination by-products were identified by gas chromatography-mass spectrometry (GC-MS) with purge-and-trap pretreatment, ultra-performance liquid chromatography-electrospray ionization-MS and GC-electron capture detector. Six volatile disinfection by-products were identified including chloroform (CF), dichloroacetonitrile, 1,1-dichloropropanone, 1,1,1-trichloropropanone, dichloronitromethane and trichloronitromethane. Degradation pathways of chlortoluron chlorination were then proposed. High concentrations of CF were generated during chlortoluron chlorination, with maximum CF yield at circumneutral pH range in solution.  相似文献   
625.
Yu TH  Lin AY  Panchangam SC  Hong PK  Yang PY  Lin CF 《Chemosphere》2011,84(9):1216-1222
In the present study, the removal mechanisms of four antibiotics (sulfamethoxazole, sulfadimethoxine, sulfamethazine, and trimethoprim) and four non-steroidal anti-inflammatory drugs (acetaminophen, ibuprofen, ketoprofen, and naproxen) in immobilized cell process were investigated using batch reactors. This work principally explores the individual or collective roles of biodegradation and bio-sorption as removal routes of the target pharmaceuticals and the results were validated by various experimental and analytical tools. Biodegradation and bio-sorption were found as dominant mechanisms for the drug removal, while volatilization and hydrolysis were negligible for all target pharmaceuticals. The target pharmaceuticals responded to the two observed removal mechanisms in different ways, typically: (1) strong biodegradability and bio-sorption by acetaminophen, (2) strong biodegradability and weak bio-sorption by sulfamethoxazole, sulfadimethoxine, ibuprofen and naproxen, (3) low biodegradability and weak bio-sorption by sulfamethazine and ketoprofen, and (4) low biodegradability and medium bio-sorption by trimethoprim. In the sorption/desorption experiment, acetaminophen, sulfamethoxazole and sulfadimethoxine were characterized by strong sorption and weak desorption. A phenomenon of moderate sorption and well desorption was observed for sulfamethazine, trimethoprim and naproxen. Both ibuprofen and ketoprofen were weakly sorbed and strongly desorbed.  相似文献   
626.
Hong J  Lu S  Zhang C  Qi S  Wang Y 《Chemosphere》2011,84(11):1542-1547
A new Vis-Fe0-H2O2-citrate-O2 system comprising zero-valent iron, hydrogen peroxide, citrate anion and aeration at circumneutral pH under visible irradiation was studied. 21 μmol L−1 of Rhodamine B (RhB) was chosen as the substrate to be tested. Experiments were conducted under conditions of 2.9 mmol L−1 of H2O2, 12.6 g of Fe0 and 1.0 mmol L−1 of citrate at pH 7.5. Results showed that, in 1 h reaction, 54% of RhB was removed with corresponding 26% of COD reduced. Meanwhile, the amount of released dissolved irons from Fe0 surface was found to be at a very low level as <5.4 μmol L−1. Extinguishing tests with isopropanol suggested that RhB oxidation by hydroxyl radicals was the main process taken place in Vis-Fe0-H2O2-citrate-O2 system, which accounted for 75% of substrate removal in 3 h reaction. Control and factor influencing experiments showed that the prohibitive extents of individual factor importance on RhB removal followed a decreasing order of Fe0 > H2O2 > citrate > Vis > O2. This study showed an excellent system that could remove refractory organic compounds from water in laboratory researches, and also provided a good idea to reduce secondary contamination by dissolved irons in future investigations.  相似文献   
627.
Hu X  Zhang Y  Luo J  Xie M  Wang T  Lian H 《Chemosphere》2011,82(10):1351-1357
Foliar uptake of airborne lead is one of the pathways for Pb accumulation in plant organs. However, the approximate contributions of airborne Pb to plant organs are still unclear. In the present study, aerosols (nine-stage size-segregated aerosols and total suspended particulates), a wild plant species (Aster subulatus) and the corresponding soils were collected and Pb contents and isotopic ratios in these samples were analyzed. Average concentration of Pb was 96.5 ± 63.5 ng m−3 in total suspended particulates (TSP) and 20.4 ± 5.5 ng m−3 in the fine fractions of size-segregated aerosols (SSA) (<2.1 μm), higher than that in the coarser fractions (>2.1 μm) (6.38 ± 3.71 ng m−3). Enrichment factors show that aerosols and soils suffered from anthropogenic inputs and the fine fractions of the size-segregated aerosols enriched more Pb than the coarse fractions. The order of Pb contents in A. subulatus was roots > leaves > stems. The linear relationship of Pb isotope ratios (206Pb/207Pb and 208Pb/206Pb) among soil, plant and aerosol samples were found. Based on the simple binary Pb isotopic model using the mean 206Pb/207Pb ratios in TSP and in SSA, the approximate contributions of airborne Pb into plant leaves were 72.2% and 65.1%, respectively, suggesting that airborne Pb is the most important source for the Pb accumulation in leaves. So the combination of Pb isotope tracing and the simple binary Pb isotope model can assess the contribution of airborne Pb into plant leaves and may be of interest for risk assessment of the exposure to airborne Pb contamination.  相似文献   
628.
Hu J  Jin J  Wang Y  Ma Z  Zheng W 《Chemosphere》2011,84(3):355-360
Air samples in four seasons at one site and tree bark samples from four districts were determined to investigate seasonal variation and regional distribution of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD) in Beijing, China. The total concentrations of PBDEs (∑PBDE) and HBCD (∑HBCD) were in the range of 57-470 and 20-1800 pg m−3 in the atmosphere, respectively. The ∑PBDE and ∑HBCD concentrations were significantly influenced by the total suspended particulate matter in atmosphere. The total concentrations of PBDEs and HBCD in tree bark samples were in the range of 99-3700 and 26-3400 ng g−1 lipid weight. It was found that regional distribution of PBDEs and HBCD was related to the function of each district. In addition, the study found that weeping willow bark was an ideal atmospheric PBDEs and HBCD passive sampler. Finally, atmospheric levels of BDE-209 and HBCD at tree bark sampling districts were estimated via applying an established bark/air partitioning model, which had been verified by the measured concentrations in tree bark and atmosphere in Beijing.  相似文献   
629.
Yan H  Wang D  Dong B  Tang F  Wang B  Fang H  Yu Y 《Chemosphere》2011,84(5):634-641
The dissipation of carbendazim and chloramphenicol alone and in combination and their effects on soil fungal:bacterial ratios and soil enzyme activities were investigated. The results revealed that carbendazim dissipation was little affected by chloramphenicol, whereas chloramphenicol dissipation was found to be retarded significantly by the presence of carbendazim. The inhibitory effect of carbendazim on the fungal:bacterial ratios was increased by the presence of chloramphenicol, and the inhibitory effect of chloramphenicol on neutral phosphatase was increased by the presence of carbendazim. Carbendazim increased soil catalase and urease activities, but this increase was partially diminished by the presence of chloramphenicol. Little interaction was observed between carbendazim and chloramphenicol with regard to their influence on soil invertase. The results obtained in this study suggest that combinations of fungicides and antibiotics may alter the compounds’ individual behaviors in soil and their effects on soil enzymes.  相似文献   
630.
The western stock of the Steller sea lion (Eumetopias jubatus) in the northern Pacific Ocean has declined by approximately 80% over the past 30 years. This led to the listing of this sea lion population as an endangered species in 1997. Chemical pollution is a one of several contributing causes. In the present study, 145 individual PCBs were determined in tissues of male sea lions from Tatitlek (Prince William Sound) and St. Paul Island (Bering Sea), and placentae from the Aleutian Islands. PCBs 90/101, 118, and 153 were abundant in all the samples. The mean toxic equivalents (TEQ) were 2.6, 4.7 and 7.4 pg/g lw in the kidney, liver, and blubber samples, respectively. The mean TEQ in placentae was 8 pg/g lw. Total PCBs concentrations (2.6-7.9 μg/g lw) in livers of some males were within a range known to cause physiological effects. Further suggesting the possibility of adverse effects on this stock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号