Unburned carbon (UC) is the major source of organic contaminants in municipal solid waste (MSW) fly ash. So most organic contaminants can be removed by the removal of the UC from the MSW fly ash. In this paper, we first used a technique of column flotation to remove UC from MSW fly ash. The influences of column flotation parameters on the recovery efficiency of UC were systematically studied. It was found that the UC recovery efficiency was greatly influenced by the gas flow rate, pH value, collector kerosene's concentration and the types of fly ash. By optimizing the above parameters, we have successfully removed 61.2% of the UC from MSW fly ash having 5.24% UC content. The removal mechanism was well accounted for the kinetic theory of column flotation and surface-chemistry theory. The results indicate that the column flotation technique is effective in removing the UC from MSW fly ash, and show that there is a strong possibility for practical application of this technique in removing the organic contaminants from MSW fly ash. 相似文献
Journal of Material Cycles and Waste Management - The qualified green lightweight aggregate (LWA) was successfully prepared from steel mill sludge (SMS) and fly ash (FAS) in one step using the... 相似文献
Environmental Geochemistry and Health - The aim of this research is to investigate the interception effect of heavy metals, such as zinc (Zn), copper (Cu), lead (Pb), arsenic (As), and cadmium (Cd)... 相似文献
Environmental Fluid Mechanics - Nutrient fluxes at the sediment–water interface are essential for water quality and aquatic ecosystems. In this study, a unified expression for the sediment... 相似文献
• Retrofitting from CAS to MBR increased effluent quality and environmental benefits.• Retrofitting from CAS to MBR increased energy consumption but not operating cost.• Retrofitting from CAS to MBR increased the net profit and cost efficiency.• The advantage of MBR is related to the adopted effluent standard.• The techno-economy of MBR improves with stricter effluent standards. While a growing number of wastewater treatment plants (WWTPs) are being retrofitted from the conventional activated sludge (CAS) process to the membrane bioreactor (MBR) process, the debate on the techno-economy of MBR vs. CAS has continued and calls for a thorough assessment based on techno-economic valuation. In this study, we analyzed the operating data of 20 large-scale WWTPs (capacity≥10000 m3/d) and compared their techno-economy before and after the retrofitting from CAS to MBR. Through cost-benefit analysis, we evaluated the net profit by subtracting the operating cost from the environmental benefit (estimated by the shadow price of pollutant removal and water reclamation). After the retrofitting, the removal rate of pollutants increased (e.g., from 89.0% to 93.3% on average for NH3-N), the average energy consumption increased from 0.40 to 0.57 kWh/m3, but the operating cost did not increase significantly. The average marginal environmental benefit increased remarkably (from 0.47 to 0.66 CNY/g for NH3-N removal), leading to an increase in the average net profit from 19.4 to 24.4 CNY/m3. We further scored the technical efficiencies via data envelopment analysis based on non-radial directional distance functions. After the retrofitting, the relative cost efficiency increased from 0.70 to 0.73 (the theoretical maximum is 1), while the relative energy efficiency did not change significantly. The techno-economy is closely related to the effluent standard adopted, particularly when truncating the extra benefit of pollutant removal beyond the standard in economic modeling. The modeling results suggested that MBR is more profitable than CAS given stricter effluent standards. 相似文献
• The promoting effects for VFA generation follow the order of APG>SDBS>HTAB.• Surfactants improve the WAS solubilization/hydrolysis and acidification processes.• The VFA promotion is associated with surfactants’ distinctive characteristics.• Surfactants induce the enrichment of functional bacteria for VFA biosynthesis.• The vital genes for substrates delivery, metabolism, and VFA yields are upregulated. Surfactants were expected to exhibit positive effects on the waste activated sludge (WAS) disposal. However, the systematic comparison of different categories of surfactants on the WAS fermentation and the functional mechanisms, especially microbial metabolic traits, have not yet been precisely explored. This study revealed the positive effects of different surfactants on the volatile fatty acid (VFA) production, which followed the order of alkyl polysaccharides (APG)>sodium dodecylbenzene sulfonate (SDBS)>hexadecyl trimethyl ammonium bromide (HTAB). Mechanistic exploration found that the presence of different surfactants improved solubilization and hydrolysis steps, and then contributed to the subsequent acidification with different efficiencies. The functional microorganisms associated with VFA generation were enriched in surfactant-conditioned reactors. Metagenomic analysis further indicated that the key genes involved in the particular process of VFA generation were over-expressed. The simultaneous bioavailable substrate improvement, functional bacterial enrichment, and metabolic activity upregulation induced by different surfactants jointly contributed to VFA promotion during WAS fermentation. This study could provide a comprehensive realization of surfactants’ impacts on the WAS fermentation process, and more importantly, it reminded the public to discern the distinct interplaying effects induced by different chemicals in regulating the WAS disposal and resource recovery. 相似文献
Environmental Science and Pollution Research - Prefabrication has been generating increasing interest as a cleaner production strategy to promote sustainable development. Alongside this trend,... 相似文献
Environmental Science and Pollution Research - Sulfate radical (?SO4?)–based advanced oxidation processes have attracted a great deal of attention for use in water disinfection... 相似文献
Environmental sustainability is the foundation and of great significance for the sustainable development of urban agglomerations. Taking the Beijing-Tianjin-Hebei urban agglomeration as an example, we developed a method to effectively assess long-term regional environmental sustainability based on the Google Earth Engine (GEE) platform. We used the GEE to obtain 5206 Landsat remote sensing images in the region from 1983 to 2016 and developed the comprehensive environmental index (CEI) to assess regional environmental sustainability based on the theme-oriented framework proposed by the United Nations Commission on Sustainable Development. We found that the environmental sustainability of the urban agglomeration showed a trend of first rising, then falling, and then rising again in the past 30 years. The average CEI increased from 0.621 to 0.631 from 1985 to 1990, dropped to the lowest value of 0.618 in 2000, and then rose to the highest value of 0.672 in 2015. In particular, the extent of areas in which environmental sustainability improved (56% of the region) was greater than the extent of areas in which environmental deterioration occurred. The environmental sustainability of Hengshui, Xingtai, and Cangzhou in the southeast of the region has been significantly improved. The method proposed in this study provides an automatic, rapid, and extensible way to assess regional environmental sustainability and provides a scientific reference for improving the sustainability of the regional environment.
Environmental Science and Pollution Research - As China’s pollution problems worsen, environmental disputes are increasing rapidly. However, only 1% of environmental disputes can be resolved... 相似文献