首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   0篇
  国内免费   6篇
安全科学   8篇
废物处理   12篇
环保管理   19篇
综合类   22篇
基础理论   32篇
污染及防治   60篇
评价与监测   12篇
社会与环境   5篇
灾害及防治   2篇
  2022年   4篇
  2021年   4篇
  2019年   2篇
  2018年   7篇
  2017年   2篇
  2016年   5篇
  2015年   1篇
  2014年   5篇
  2013年   22篇
  2012年   17篇
  2011年   18篇
  2010年   5篇
  2009年   10篇
  2008年   13篇
  2007年   15篇
  2006年   12篇
  2005年   10篇
  2004年   7篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  1999年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
151.
Catalytic pyrolysis of low-density polyethylene (LDPE) was investigated using various fly ash-derived silica–alumina catalysts (FSAs). FSAs were prepared by a simple activation method that basically includes NaOH treatment of fly ash by a fusion method, followed by an aging process. A series of LDPE pyrolysis experiments was conducted and the catalytic performance of FSAs was assessed in terms of the degradation temperature and the simulated boiling point distribution of the liquid products. The effects of synthesis conditions such as NaOH/fly ash weight ratio and aging time were examined by X-ray diffractometer (XRD), Brunauer-Emmett-Teller (BET) surface area analyzer, and scanning electron microscope to clarify the controlling factors affecting the catalytic activity. To obtain catalyst with high activity, it is necessary to produce sufficient silica and alumina species that can be easily co-precipitated into solid acid catalyst by destruction of the fly ash structure and to optimize the activation time for catalyst synthesis to prevent the transformation into inactive phases. The catalytic performance of FSA obtained from optimal conditions was equivalent to that of commercial catalysts, demonstrating the effectiveness of the catalyst.  相似文献   
152.

An initial reclamation of the Young Dong coal mine site, located in northeastern South Korea, was completed in 1995. Despite the filling of the adit with limestone, acid rock drainage (ARD) enters Young Dong tributary and is then discharged to Imgok Creek. This ARD carries an average of 500 mg CaCO3/l of mineral acidity, primarily as Fe(II) and Al. Before spring runoff, the flow of Imgok Creek is 3.3–4 times greater than that of the tributary and has an alkalinity of 100 mg CaCO3/l, which is sufficient to eliminate the mineral acidity and raise the pH to about 6.5. From April through September 2008, there were at least two periods of high surface flow that affects the flow of ARD from the adit. Flow of ARD reaches 2.8 m3/min during spring runoff. This raised the concentrations of Fe and Al in the confluence with Imgok Creek. However, by 2 km downstream the pH of the Imgok Creek is 6.5 and only dissolved Fe is above the Korean drinking water criteria (0.30 mg/l). This suggests only a minor impact of Young Dong Creek water on Imgok Creek. Acid digestion of the sediments in Imgok Creek and Young Dong Tributary reveals considerable abundances of heavy metals, which could have a long-term impact on water quality. However, several water-based leaching tests, which better simulate the bioavailable metals pool, released only Al, Fe, Mn, and Zn at concentrations exceeding the criteria for drinking water or aquatic life.

  相似文献   
153.
The objective of this study was to assess the changes in mine water quality as an underground mine flooded from July 2005 to October 2008. The effect of air injection with a blower into the water was used to evaluate the potential to convert ferrous to ferric iron and to provide in situ treatment and precipitation. Mine flooding averaged 31 cm/day with a linear shape until November 2007, when it flattened out due to outflow. During flooding, mine water pH remained around 6, but Eh shifted from 200 to −150 mV. After the mine water level stabilized, contents of elements such as Fe and SO4 tended to decrease as time passed. Air was injected by diffusers (150 L/min/each) at three different depths of 2, 3, and 5 m below the water level in the shaft. Dissolved oxygen eventually increased to 4 or 5 mg/L depending on the depth of the diffusers. Aeration caused conversion of ferrous iron to ferric iron and about 30 mg/l of iron was removed from the mine water. Therefore, air injection shows potential as a semi-active treatment or part of conventional treatment to precipitate iron in the mine pool.  相似文献   
154.
155.
The elevated level of nitrate in groundwater is a serious problem in Korean agricultural areas. To control and manage groundwater quality, the characterization of groundwater contamination and identification of the factors affecting the nitrate concentration of groundwater are significant. The characterization of groundwater contamination at a hydrologically complex agricultural site in Yupori, Chuncheon (Korea) was undertaken by analyzing the hydrochemical data of groundwater within a statistical framework. Multivariate statistical tools such as cluster analyses and Tobit regression were applied to investigate the spatial variation of nitrate contamination and to analyze the factors affecting the NO3-N concentration in a shallow groundwater system. The groundwater groups from the cluster analysis were consistent with the land use pattern of the study area. The clustered group of a gentle-slope area with lower elevations showed higher NO3-N contamination of groundwater than groups on a hillside with higher elevations. Tobit regression results indicated that the agricultural activity in the vegetable fields and barns were the major factors affecting the elevated NO3-N concentration while the land slopes and elevations were negatively correlated with the NO3-N concentration. This shows that topographic characteristics such as land slopes and elevations should be considered to evaluate the land use impact on shallow groundwater quality.  相似文献   
156.
Lee JK  Führ F  Kwon JW  Ahn KC 《Chemosphere》2002,49(2):173-181
In order to elucidate the long-term fate of the sulfonylurea herbicide cinosulfuron, the 14C-labelled chemical was applied to a clay loam soil, encased in two lysimeters, 22 days after rice (Oryza sativa L.) transplanting, and rice plants were grown for four consecutive years. Throughout the experimental period, leaching through soil profiles, absorption and translocation by rice plants, and distribution of 14C by downward movement in the soil layers were clarified. The total volume of leachates collected through the lysimeter soil over the four years amounted to 168 and 146 L in lysimeters I and II, respectively. The leachates contained 2.43% and 2.99% of the originally applied 14C-radioactivity, corresponding to an average concentration of 0.29 and 0.41 microg/L as the cinosulfuron equivalent in lysimeters I and II, respectively. The total 14C-radioactivity translocated to rice plants in the third and fourth year was 0.69% and 0.60% (lysimeter I), and 1.02% and 0.84% (lysimeter II) of the 14C applied, respectively. Larger amounts of cinosulfuron equivalents (0.54-0.75%) remained in the straw in the fourth year than in any other parts. The 14C-radioactivities distributed down to a depth of 70 cm after four years were 56.71-57.52% of the 14C applied, indicating the continuous downward movement and degradation of cinosulfuron in soil. The non-extractable residues were more than 88% of the soil radioactivity and some 45-48% of them was incorporated into the humin fraction. The 14C-radioactivity partitioned into the aqueous phase was nearly 30% of the extractable 14C, suggesting strongly that cinosulfuron was degraded into some polar products during the experimental period. It was found out in a supplemental investigation that flooding and constant higher temperature enhanced mineralization of [14C]cinosulfuron to 14CO2 in soil, indicating the possibility of chemical hydrolysis and microbial degradation of the compound in the flooded lysimeter soil.  相似文献   
157.
The presence of hexavalent chromium, Cr(VI), in soil is an environmental concern due to its effect on human health. The concern arises from the leaching and the seepage of Cr(VI) from soil to groundwater. In this paper, a stabilization technology to prevent this problem was simulated on an artificial soil contaminated with hexavalent chromium. The process is a physico-chemical treatment in which the toxic pollutant is physically entrapped within a solid matrix formed by the pozzolanic reactions of lime and fly ash to reduce its leachability and, therefore, its toxicity. This paper presents the optimum ratio of fly ash and lime in order to stabilize artificial soils contaminated with 0.4 wt.% of Cr (VI) in a brief term process. The degree of chromium released from the soil was evaluated using a modified Toxicity Characteristic Leaching Procedure (TCLP) by US Environmental Protection Agency (EPA). Overall, experimental results showed reduced leachability of total and hexavalent chromium from soils treated with both fly ash and quicklime, and that leachability reduction was more effective with increasing amount of fly ash and quicklime. Stabilization percentages between 97.3% and 99.7% of the initial chromium content were achieved, with Cr(VI) concentration in the TCLP leachates below the US EPA limit for chromium of 5 mg/l. Adequate treatment was obtained after 1 day of curing with just 25% fly ash and 10% quicklime.  相似文献   
158.
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号