首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1188篇
  免费   8篇
  国内免费   29篇
安全科学   12篇
废物处理   57篇
环保管理   156篇
综合类   101篇
基础理论   197篇
环境理论   1篇
污染及防治   424篇
评价与监测   210篇
社会与环境   62篇
灾害及防治   5篇
  2023年   33篇
  2022年   75篇
  2021年   64篇
  2020年   13篇
  2019年   27篇
  2018年   41篇
  2017年   35篇
  2016年   54篇
  2015年   27篇
  2014年   51篇
  2013年   151篇
  2012年   55篇
  2011年   64篇
  2010年   56篇
  2009年   47篇
  2008年   68篇
  2007年   43篇
  2006年   45篇
  2005年   34篇
  2004年   32篇
  2003年   30篇
  2002年   21篇
  2001年   17篇
  2000年   10篇
  1999年   10篇
  1998年   4篇
  1997年   7篇
  1996年   6篇
  1993年   5篇
  1992年   7篇
  1991年   8篇
  1990年   3篇
  1989年   6篇
  1988年   3篇
  1987年   8篇
  1986年   4篇
  1985年   3篇
  1982年   5篇
  1978年   4篇
  1976年   6篇
  1975年   4篇
  1974年   2篇
  1972年   3篇
  1969年   5篇
  1968年   4篇
  1967年   2篇
  1965年   2篇
  1959年   2篇
  1957年   3篇
  1956年   2篇
排序方式: 共有1225条查询结果,搜索用时 203 毫秒
61.
Dust is considered as one of the most widespread air pollutants. The objective of the study was to analyse the effect of dust load (DL) on the leaf attributes of the four tree species planted along the roadside at a low pollution Banaras Hindu University (BHU) campus and a highly polluted industrial area (Chunar, Mirzapur) of India. The studied leaf attributes were: leaf area, specific leaf area (SLA), relative water content (RWC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), chlorophyll content (Chl), maximum stomatal conductance (Gsmax), maximum photosynthetic rate (A max) and intrinsic water-use efficiency (WUEi). Results showed significant effect of sites and species for DL and the leaf attributes. Average DL across the four tree species was greater at Chunar, whereas, the average values of leaf attributes were greater at the BHU campus. Maximum DL was observed for Tectona grandis at Chunar site and minimum for Syzygium cumini at BHU campus. Across the two sites, maximum value of SLA, Chl and Gsmax were exhibited by S. cumini, whereas, the greatest value of RWC, LNC, LPC, A max and WUEi were observed in Anthocephalus cadamba. A. cadamba and S. cumini exhibited 28 and 27 times more dust accumulation, respectively, at the most polluted Chunar site as compared to the BHU campus. They also exhibited less reduction in A max due to dust deposition as compared to the other two species. Therefore, both these species may be promoted for plantation along the roadside of the sites having greater dust deposition.  相似文献   
62.
Scour is defined as the processes of removal of sediment particles from water stream bed by the erosive action of activated water, and also carries sediment away from the hydraulic structures. Scour is the main cause of pier failure. Numerous equations are available for estimating temporal and equilibrium scour depth. The present study describes the phenomenon of temporal scour depth variation at bridge piers and deals with the methods for its estimation. The accuracy of six temporal scour depth equations are also checked in this study. After graphical and statistical analysis, it was found that the relationship proposed by Oliveto and Hager (J Hydraul Eng (ASCE) 128(9):811–520, 2002) predicts temporal scour depth better than other equations. Three equations of equilibrium time of scour are also used for computing equilibrium time. Equilibrium time equation proposed by Choi and Choi (Water Environ J 30(1–2):14–21, 2016) gives better agreements with observed values.  相似文献   
63.
The diamondback moth, Plutella xylostella, is recognized as a widely distributed destructive insect pest of Brassica worldwide. The management of this pest is a serious issue, and an estimated annual cost of its management has reached approximately US$4 billion. Despite the fact that chemicals are a serious threat to the environment, lots of chemicals are applied for controlling various insect pests especially P. xylostella. An overreliance on chemical control has not only led to the evolution of resistance to insecticides and to a reduction of natural enemies but also has polluted various components of water, air, and soil ecosystem. In the present scenario, there is a need to implement an environmentally friendly integrated pest management (IPM) approach with new management tactics (microbial control, biological control, cultural control, mating disruption, insecticide rotation strategies, and plant resistance) for an alternative to chemical control. The IPM approach is not only economically beneficial but also reduces the environmental and health risks. The present review synthesizes published information on the insecticide resistance against P. xylostella and emphasizes on adopting an alternative environmentally friendly IPM approach for controlling P. xylostella in China.  相似文献   
64.

Parthenium weed is a problematic invasive species in several countries around the world. Although it is considered to be a highly invasive species within Australia, not all biotypes of parthenium weed exhibit the same ability in regard to aggressive colonization and distribution. Differences among biotypes, particularly in regard to environmental ranges as a possible basis for this variation, have not always been elucidated. To determine whether drought tolerance could be a factor in biotype demographics, we quantified the biological responses of two Australian parthenium weed biotypes known to differ in invasive ability Clermont (“high”) and Toogoolawah (“low”) to 100, 75 and 50% of soil water holding capacity (WHC). The Clermont biotype had greater vegetative growth, seed production and chlorophyll content than Toogoolawah, across all moisture levels. Net photosynthesis, stomatal conductance, internal CO2 concentration, seed production per plant, 1000 seed weight and subsequent germination percentage were also higher for Clermont than for Toogoolawah and were maximum at 75% WHC. Clermont plants also had higher total soluble sugar, phenolics and free proline content than Toogoolawah, and a significant increase in the levels of all of these biochemicals was observed at 50% WHC. In conclusion, Clermont grew and reproduced better than Toogoolawah across all moisture regimes consistent of enhanced invasive ability of this biotype. Overall, the ability of parthenium weed to maintain good growth, physiology and seed production under moisture stress may enable it to colonize a wide range of Australian environments.

  相似文献   
65.
In view of bio-inorganic importance, iron and zinc incorporated soybean oil based polymer was prepared by condensation polymerization of oil based fatty amide polyole, sebacic acid, zinc acetate and ferric chloride in a process initiated by sodium ethoxide. Microwave assisted synthesis was used throughout the reaction as it is ecofriendly and requires minimal usage of solvents. Physical techniques such as FT-IR and 1HNMR have been used to establish the structure of the polymers. Standard laboratory methods like acid value, saponification value, iodine value, specific gravity and viscosity were used to study the chemical diversity of each product. Thermo gravimetry/differential thermal analyzer was used to analyse the thermal behavior of polymer. The synthesized compounds were subjected to biological study. The observed fungicidal characteristics of synthesized compounds indicate that these compounds might be promising antifungal agents defining a new class of antimycotics. The polymers were used in preparation of films which can be used as protective packaging material of edible items.  相似文献   
66.
Information regarding air emissions from shale gas extraction and production is critically important given production is occurring in highly urbanized areas across the United States. Objectives of this exploratory study were to collect ambient air samples in residential areas within 61 m (200 feet) of shale gas extraction/production and determine whether a “fingerprint” of chemicals can be associated with shale gas activity. Statistical analyses correlating fingerprint chemicals with methane, equipment, and processes of extraction/production were performed. Ambient air sampling in residential areas of shale gas extraction and production was conducted at six counties in the Dallas/Fort Worth (DFW) Metroplex from 2008 to 2010. The 39 locations tested were identified by clients that requested monitoring. Seven sites were sampled on 2 days (typically months later in another season), and two sites were sampled on 3 days, resulting in 50 sets of monitoring data. Twenty-four-hour passive samples were collected using summa canisters. Gas chromatography/mass spectrometer analysis was used to identify organic compounds present. Methane was present in concentrations above laboratory detection limits in 49 out of 50 sampling data sets. Most of the areas investigated had atmospheric methane concentrations considerably higher than reported urban background concentrations (1.8–2.0 ppmv). Other chemical constituents were found to be correlated with presence of methane. A principal components analysis (PCA) identified multivariate patterns of concentrations that potentially constitute signatures of emissions from different phases of operation at natural gas sites. The first factor identified through the PCA proved most informative. Extreme negative values were strongly and statistically associated with the presence of compressors at sample sites. The seven chemicals strongly associated with this factor (o-xylene, ethylbenzene, 1,2,4-trimethylbenzene, m- and p-xylene, 1,3,5-trimethylbenzene, toluene, and benzene) thus constitute a potential fingerprint of emissions associated with compression.

Implications: Information regarding air emissions from shale gas development and production is critically important given production is now occurring in highly urbanized areas across the United States. Methane, the primary shale gas constituent, contributes substantially to climate change; other natural gas constituents are known to have adverse health effects. This study goes beyond previous Barnett Shale field studies by encompassing a wider variety of production equipment (wells, tanks, compressors, and separators) and a wider geographical region. The principal components analysis, unique to this study, provides valuable information regarding the ability to anticipate associated shale gas chemical constituents.  相似文献   

67.
With growing concerns of fossil fuel resources availability and the volatility of crude oil price, it is becoming imperative day by day to utilize the renewable sources of energy in a sustainable, environment friendly and energy efficient manner. India is the world’s second largest producer of cotton after China. India also has several agricultural and forest residues, and cotton residue is one of the most abundant agricultural residues after rice and wheat residues. The hydropyrolysis of cotton residues has been carried out at various pressures (1, 20 and 40 bar) and temperatures (300, 350, 400 and 450 °C). The effects of temperature and pressure have been studied to understand their yield patterns, and it has been observed that 20 bar pressure and 400 °C are the optimum conditions. The thermogravimetric analysis shows that cotton residue has two significant decomposition temperatures. The SEM, XRD patterns and FT-IR spectra clearly indicate the decomposition of the macromolecular structure of the cotton residue and formation of low molecular weight hydrocarbons suitable for various applications.  相似文献   
68.
Pot culture experiments were conducted in a glasshouse to evaluate the effects of four efficient Cr(VI)-reducing bacterial strains (SUCR44, SUCR140, SUCR186, and SUCR188) isolated from rhizospheric soil, and four arbuscular mycorrhizal fungi (AMF—Glomus mosseae, G. aggregatum, G. fasciculatum, and G. intraradices) alone or in combination, on Zea mays in artificially Cr(VI)-amended soil. Presence of a strain of Microbacterium sp. SUCR140 reduced the chromate toxicity resulting in improved growth and yields of plants compared to control. The bioavailability of Cr(VI) in soil and its uptake by the plant reduced significantly in SUCR140-treated plants; the effects of AMF, however, either alone or in presence of SUCR140 were not significant. On the other hand, presence of AMF significantly restricted the transport of chromium from root to the aerial parts of plants. The populations of AMF chlamydospores in soil and its root colonization improved in presence of SUCR140. This study demonstrates the usefulness of an efficient Cr(VI)-reducing bacterial strain SUCR140 in improving yields probably through reducing toxicity to plants by lowering bioavailability and uptake of Cr(VI) and improving nutrient availability through increased mycorrhizal colonization which also restricted the transport of chromium to the aerial parts.  相似文献   
69.
Based upon 16S rDNA sequence homology, 15 phorate-degrading bacteria isolated from sugarcane field soils by selective enrichment were identified to be different species of Bacillus, Pseudomonas, Brevibacterium, and Staphylococcus. Relative phorate degradation in a mineral salt medium containing phorate (50 μg ml?1) as sole carbon source established that all the bacterial species could actively degrade more than 97 % phorate during 21 days. Three of these species viz. Bacillus aerophilus strain IMBL 4.1, Brevibacterium frigoritolerans strain IMBL 2.1, and Pseudomonas fulva strain IMBL 5.1 were found to be most active phorate metabolizers, degrading more than 96 % phorate during 2 days and 100 % phorate during 13 days. Qualitative analysis of phorate residues by gas liquid chromatography revealed complete metabolization of phorate without detectable accumulation of any known phorate metabolites. Phorate degradation by these bacterial species did not follow the first-order kinetics except the P. fulva strain IMBL 5.1 with half-life period (t½) ranging between 0.40 and 5.47 days.  相似文献   
70.
This study presents the performance evaluation of a novel denuder-equipped PM1 (particles having aerodynamic diameter less than 1 μm) sampler, tested during fog-dominated wintertime, in the city of Kanpur, India. One PM1 sampler and one denuder-equipped PM1 sampler were co-located to collect ambient PM1 for 25 days. The mean PM1 mass concentration measured on foggy days with the PM1 sampler and the denuder-equipped PM1 sampler was found to be 165.95 and 135.48 μg/m3, respectively. The mean PM1 mass concentration measured on clear days with the PM1 sampler and the denuder-equipped PM1 sampler was observed to be 159.66 and 125.14 μg/m3, respectively. The mass concentration with denuder-fitted PM1 sampler for both foggy and clear days was always found less than the PM1 sampler. The same drift was observed in the concentrations of water-soluble ions and water-soluble organic carbon (WSOC). Moreover, it was observed that the use of denuder leads to a significant reduction in the PM positive artifact. The difference in the concentration of chemical species obtained by two samplers indicates that the PM1 sampler without denuder had overestimated the concentrations of chemical species in a worst-case scenario by almost 40 %. Denuder-fitted PM1 sampler can serve as a useful sampling tool in estimating the true values for nitrate, ammonium, potassium, sodium and WSOC present in the ambient PM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号