首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14587篇
  免费   103篇
  国内免费   163篇
安全科学   359篇
废物处理   604篇
环保管理   1576篇
综合类   3270篇
基础理论   3390篇
环境理论   7篇
污染及防治   3658篇
评价与监测   1136篇
社会与环境   781篇
灾害及防治   72篇
  2022年   135篇
  2021年   120篇
  2019年   104篇
  2018年   207篇
  2017年   216篇
  2016年   310篇
  2015年   232篇
  2014年   404篇
  2013年   1041篇
  2012年   466篇
  2011年   594篇
  2010年   489篇
  2009年   536篇
  2008年   585篇
  2007年   592篇
  2006年   555篇
  2005年   497篇
  2004年   461篇
  2003年   465篇
  2002年   438篇
  2001年   596篇
  2000年   374篇
  1999年   260篇
  1998年   147篇
  1997年   164篇
  1996年   172篇
  1995年   188篇
  1994年   179篇
  1993年   132篇
  1992年   168篇
  1991年   174篇
  1990年   170篇
  1989年   141篇
  1988年   157篇
  1987年   97篇
  1986年   128篇
  1985年   128篇
  1984年   122篇
  1983年   114篇
  1982年   121篇
  1981年   120篇
  1980年   88篇
  1979年   99篇
  1978年   102篇
  1976年   92篇
  1974年   104篇
  1972年   87篇
  1971年   85篇
  1967年   100篇
  1964年   93篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Tillage erosion and its effect on soil properties and crop yield in Denmark   总被引:1,自引:0,他引:1  
Tillage erosion had been identified as a major process of soil redistribution on sloping arable land. The objectives of our study were to investigate the extent of tillage erosion and its effect on soil quality and productivity under Danish conditions. Soil samples were collected to a 0.45-m depth on a regular grid from a 1.9-ha site and analyzed for 137Cs inventories, as a measure of soil redistribution, soil texture, soil organic carbon (SOC) contents, and phosphorus (P) contents. Grain yield was determined at the same sampling points. Substantial soil redistribution had occurred during the past decades, mainly due to tillage. Average tillage erosion rates of 2.7 kg m(-2) yr(-1) occurred on the shoulderslopes, while deposition amounted to 1.2 kg m(-2) yr(-1) on foot- and toeslopes. The pattern of soil redistribution could not be explained by water erosion. Soil organic carbon and P contents in soil profiles increased from the shoulder- toward the toeslopes. Tillage translocation rates were strongly correlated with SOC contents, A-horizon depth, and P contents. Thus, tillage erosion had led to truncated soils on shoulderslopes and deep, colluvial soils on the foot- and toeslopes, substantially affecting within-field variability of soil properties. We concluded that tillage erosion has important implications for SOC dynamics on hummocky land and increases the risk for nutrient losses by overland flow and leaching. Despite the occurrence of deep soils across the study area, evidence suggested that crop productivity was affected by tillage-induced soil redistribution. However, tillage erosion effects on crop yield were confounded by topography-yield relationships.  相似文献   
122.
Sustainable land application: an overview   总被引:1,自引:0,他引:1  
Man has land-applied societal nonhazardous wastes for centuries as a means of disposal and to improve the soil via the recycling of nutrients and the addition of organic matter. Nonhazardous wastes include a vast array of materials, including manures, biosolids, composts, wastewater effluents, food-processing wastes, industrial by-products; these are collectively referred to herein as residuals. Because of economic restraints and environmental concerns about land-filling and incineration, interest in land application continues to grow. A major lesson that has been learned, however, is that the traditional definition of land application that emphasizes applying residuals to land in a manner that protects human and animal health, safeguards soil and water resources, and maintains long-term ecosystem quality is incomplete unless the earning of public trust in the practices is included. This overview provides an introduction to a subset of papers and posters presented at the conference, "Sustainable Land Application," held in Orlando, FL, in January 2004. The USEPA, USDA, and multiple national and state organizations with interest in, and/or responsibilities for, ensuring the sustainability of the practice sponsored the conference. The overriding conference objectives were to highlight significant developments in land treatment theory and practice, and to identify future research needs to address critical gaps in the knowledge base that must be addressed to ensure sustainable land application of residuals.  相似文献   
123.
Repeated application may increase rates of pesticide dissipation in soil and reduce persistence. The potential for this to occur was investigated for the fungicide, tebuconazole (alpha-[2-(4-chlorophenyl)ethyl]-alpha-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol), when used for peanut (Arachis hypogaea L.) production. Soil samples were collected from peanut plots after each of four tebuconazole applications at 2-wk intervals. Soil moisture was adjusted to field capacity as necessary and samples were incubated in the laboratory for 63 d at 30 degrees C. Untreated plot samples spiked with the compound served as controls. Results indicated accelerated dissipation in field-treated samples with the time to fifty percent dissipation (DT50) decreasing from 43 to 5 d after three tebuconazole applications. Corresponding increases in rates of accumulation and decay of degradates were also indicated. Best-fit equations (r2 = 0.84-0.98) to dissipation kinetic data combined with estimates of canopy interception rates were used to predict tebuconazole and degradates concentration in soil after each successive application. Predicted concentrations compared with values measured in surface soil samples were from twofold less to twofold greater. Use of kinetic data will likely enhance assessments of treatment efficacy and human and ecological risks from normal agronomic use of tebuconazole on peanut. However, the study indicated that varying soil conditions (in particular, soil temperature and water content) may have an equal or greater impact on field dissipation rate than development of accelerated dissipation. Results emphasize that extension of laboratory-derived kinetic data to field settings should be done with caution.  相似文献   
124.
Terrace-contouring systems with on-site water detention cannot be installed in areas of complex topography, small parceling and multi-blade moldboard plow use. However, field borders at the downslope end may be raised at the deepest part where runoff overtops to create detention ponds, which can be drained by subsurface tile outlets and act similar to terrace-contouring systems. Four of such detention ponds were monitored over 8 years. Monitored effects included the prevention of linear erosion down slope, the sediment trapping from upslope, the enrichment of major nutrients in the trapped and delivered sediments, the amount of runoff retained temporarily, the amount of runoff reduced by infiltration, the decrease in peak runoff rate and the decrease in peak concentrations of agrochemicals due to the mixing of different volumes of water within the detention ponds. The detention ponds had a volume of 30–260 m3 ha−1 and trapped 54–85% of the incoming sediment, which was insignificantly to slightly depleted (5–25%) in organic carbon, phosphorus, nitrogen and clay as compared to the eroding topsoil, while the delivered sediment was strongly enriched (+70–270%) but part of this enrichment already resulted from the enrichment of soil loss. The detention ponds temporarily stored 200–500 m3 of runoff. A failure was never experienced. Due to the siltation of the pond bottom, the short filled time (1–5 days) and the small water covered area, infiltration and evaporation reduced runoff by less than 10% for large events. Peak runoff during heavy rains was lowered by a factor of three. Peak concentrations of agrochemicals (Terbutylazin) were lowered by a factor of two. The detention ponds created by raising the downslope field borders at the pour point efficiently reduced adverse erosion effects downslope the eroding site. They are cheap and can easily be created with on-farm machinery. Their efficiency is improved where they are combined with an on-site erosion control like mulch tillage because sediment and runoff input are reduced. Ponds had to be dredged only after the first year when on-site erosion control was not fully effective.  相似文献   
125.
Analysis of mosquitofish, Gambusia affinis, has proven useful for monitoring contaminant levels in aquatic biota; however, the small size of this species often requires the compositing of several fish to provide sufficient biomass for selenium analysis. Such composites have usually been obtained without considering the length and sex of the individual fish. The present study found significant differences in mean lengths and sex ratios of mosquitofish sampled with small-mesh dip nets from five sites close to each other in the San Joaquin Valley, California. To test the effect of these different sample characteristics, fish from each site were divided by sex into five size classes (<20, 20-30, 31-45, 46-60, and >60mm total length) before analysis for total selenium. Altogether, fish from the San Luis Drain and Kesterson Ponds 2 and 7 contained 65-360 microg g(-1) selenium (dry weight basis), or about 28- to 300-fold more than concentrations in fish of the same length and sex from the Volta Wasteway and Volta Pond 26. Except for females 31-45 mm long from the San Luis Drain that had higher concentrations than either smaller or larger females, selenium concentrations did not differ significantly among size classes. Although concentrations differed between sexes in samples from the San Luis Drain, Kesterson Pond 2, and Volta Pond 26, neither males nor females consistently had the higher concentrations. In the San Luis Drain, 20-30 and 31-45 mm long females had higher concentrations than did males of the same size classes; in Kesterson Pond 2 and Volta Pond 26, however, 20-30 mm long males had higher concentrations than did females of the same size class. Although no consistent patterns were observed, the occasional differences in selenium concentrations in fish of different length and sex indicate that these variables should be considered when surveys and monitoring studies are designed.  相似文献   
126.
This paper discusses agriculture's share in the world-wide emissions of climate-affecting gases and in the global warming potential (GWP). Proposals also are presented to reduce these emissions adequately, using a cause-oriented approach. Largely due to the fertilization and cultivation of agriculture as well as the burning of biomass, agriculture has a very high share in the anthropogenic emissions of NH(3), N(2)O, CH(4) and CO at >95%, 81%, 70% and 52%, respectively, while its share in the NO(x) and CO(2) emissions is relatively small at 35% and 21%. The GWP of agriculture, based on annually 16.1 x 10(9) tons of CO(2), approaches 63% of the GWP of the energy sector or 80% of the GWP of its CO(2) emissions. At 34% and 32%, respectively, the main originators in the GWP of agriculture would seem to be CO(2) (changing land use) and CH(4) (animal husbandry/rice cropping/biomass burning) followed at 15% by NO(2) (technical and biological N fixation/(cultivation and recultivation/biomass burning) and 10% and 9% by CO and NO(x). The GWP of 3 German dairy cows corresponds with 13.2 tonnes CO(2) per year the GWP of two average German automobiles. However, the ozone-destroying effect of N(2)O and the climate-relevant effects of NH(3) are not yet included here. As with the therapy for other 'modern' boundary-crossing environmental damages, such as acidification or eutrophication, global climate change therapy likewise needs a therapy for the respective effects of reactive compounds of carbon, nitrogen, phosphorous, and sulfur also emitted by agriculture. Proposals for reducing these emissions within the agricultural sector include need-oriented plant, animal and human nutrition, more efficient external and internal nutrient recycling, the cessation of further clearing by burning, along with intensified afforestation mainly in the tropics, targeted measures to reduce nutrient losses/emissions, and measures for more efficient use of nutrients in plant, animal and human nutrition. These measures would at best result in reduced pollution of the global environment but not put it to an end. Decisive, therefore, is both the tolerable extent of mankind and its long-term sustainable way of life.  相似文献   
127.
Using a combination of soil, land use and geological information, a map of Great Britain has been derived which indicates the sensitivity of surface waters to acidification. For the geological information, a slightly modified version of an available map was used which indicated the sensitivity of groundwaters to acidification. For soils, 1-km databases of soil information for England and Wales and for Scotland were employed to map the soil sensitivity as determined by buffering capacity. The derived soils map was modified to take account of agricultural liming in arable and managed grassland areas using the ITE Land Classification. The final map of surface water sensitivity was obtained by using a geographic information system overlay procedure which enabled each combination of soil and geology sensitivity to be uniquely defined. The final sensitivity classification was based upon expert knowledge and the experience of a similar sensitivity mapping exercise for Wales.  相似文献   
128.
In Brazil most Construction and Demolition Waste (C&D waste) is not recycled. This situation is expected to change significantly, since new federal regulations oblige municipalities to create and implement sustainable C&D waste management plans which assign an important role to recycling activities. The recycling organizational network and its flows and components are fundamental to C&D waste recycling feasibility. Organizational networks, flows and components involve reverse logistics. The aim of this work is to introduce the concepts of reverse logistics and reverse distribution channel networks and to study the Brazilian C&D waste case.  相似文献   
129.
Different aspects of bacterial degradation of organic contaminants in soil, and how to improve the efficiency and reproducibility is discussed in this review. Although bioremediation in principle includes the use of any type of organism in improving the condition of a contaminated site, most commonly bacteria are the degraders and other organisms, such as soil animals or plant roots, play a role in dissemination of bacteria and, indirectly, plasmids between bacteria, and in providing nutrients and co-substrates for the bacteria active in the degradation process. There are a number of different procedures that have been tested more-or-less successfully in attempts to improve reliability, cost efficiency and speed of bioremediation. The methods range from minimal intervention, such as mere monitoring of intrinsic bioremediation, through in situ introduction of nutrients and/or bacterial inocula or improvement of physico-chemical conditions, all the way to excavation followed by on site or ex situ composting in its different varieties. In the past the rule has been that more intervention (leading to higher costs) has been more reliable, but novel ideas are continuously tried out, both as a means to come up with new truly functional applications and also as a line of studies in basic soil microbial ecology. Both approaches generate valuable information needed when predicting outcome of remediation activities, evaluating environmental risks, deciding on cleaning-up approaches, etc. The emphasis of this review is to discuss some of the novel methods for which the value has not been clearly shown, but that in our view merit continued studies and efforts to make them work, separately or in combination.  相似文献   
130.
Field studies were conducted at USDA Beltsville Agricultural Research Center, Beltsville, Maryland, in 1984 and 1985 using open-top chambers to acquire information on the responses of 12 soybean (Glycine max L. Merr.) cultivars to O3 stress and to examine the interactions between maturity groups and O3 stress. Cultivars representing Groups III, IV, and V were exposed for approximately 3 months to charcoal-filtered air (CF) and nonfiltered air plus 40 nl litre(-1) O3 (NF + O3). Ozone was added 6 h d(-1), 5 d week(-1) for 13 weeks. The CF effectively reduced the accumulative oxidant exposure (AOX) to less than 1.0 microl litre(-1) h and the NF + O3 treatment approximately doubled the ambient AOX (16.7 microl litre(-1) h) to about 30 microl litre(-1) h. The AOX estimates the total O3 exposure above 30 nl litre(-1) during an entire growing season. Plant growth rates and relative growth rates were reduced by 17.0 and 14.4%, respectively, when averaged over cultivars. Based on growth rates, the Group III cultivars were the most affected by O3 stress. Averaged over cultivars, leaf expansion rates, leaf conductance, and transpiration rates were lower in the NF + O3 treatment compared to the CF control; however, wide variation was found with the stomatal results from field observations. Combined over years and cultivars, grain yield was reduced by an average of 12.5% by O3 stress with 3 of 12 cultivars showing significant reductions. Grain protein content was increased by 0.7% by O3 stress, but cultivar differences were equal to the differences caused by the O3 treatments. Grain oil content was unchanged by the O3 treatments. Group IV cultivars showed the greatest decrease in grain yield due to O3 stress. Multiple regression analyses were calculated using the difference between the CF and NF + O3 treatment as a measure of O3 stress. Significant positive relationships were found among net assimilation rates, plant growth rates, relative growth rates, and leaf expansion rates, which suggest that growth analysis characteristics would be useful in addition to yield in air pollution tolerance improvement studies with soybeans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号