首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42176篇
  免费   428篇
  国内免费   311篇
安全科学   1150篇
废物处理   1573篇
环保管理   5514篇
综合类   8866篇
基础理论   11015篇
环境理论   23篇
污染及防治   10489篇
评价与监测   2367篇
社会与环境   1673篇
灾害及防治   245篇
  2022年   287篇
  2021年   281篇
  2019年   284篇
  2018年   528篇
  2017年   516篇
  2016年   778篇
  2015年   631篇
  2014年   885篇
  2013年   2993篇
  2012年   1120篇
  2011年   1621篇
  2010年   1391篇
  2009年   1435篇
  2008年   1655篇
  2007年   1744篇
  2006年   1548篇
  2005年   1318篇
  2004年   1333篇
  2003年   1270篇
  2002年   1230篇
  2001年   1621篇
  2000年   1124篇
  1999年   732篇
  1998年   569篇
  1997年   562篇
  1996年   565篇
  1995年   638篇
  1994年   600篇
  1993年   540篇
  1992年   563篇
  1991年   529篇
  1990年   568篇
  1989年   563篇
  1988年   474篇
  1987年   430篇
  1986年   409篇
  1985年   434篇
  1984年   439篇
  1983年   456篇
  1982年   451篇
  1981年   432篇
  1980年   369篇
  1979年   391篇
  1978年   331篇
  1977年   290篇
  1976年   299篇
  1974年   283篇
  1973年   282篇
  1972年   296篇
  1967年   283篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
211.
212.
In this study, an inexact fuzzy chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is proposed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing inexact two-stage programming and mixed-integer linear programming techniques by incorporating uncertainties expressed as multiple uncertainties of intervals and dual probability distributions within a general optimization framework. The developed method can provide an effective linkage between the predefined environmental policies and the associated economic implications. Four special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it provides a linkage to predefined policies that have to be respected when a modeling effort is undertaken; secondly, it is useful for tackling uncertainties presented as intervals, probabilities, fuzzy sets and their incorporation; thirdly, it facilitates dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period, multi-level, and multi-option context; fourthly, the penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised solid waste-generation rates are violated. In a companion paper, the developed method is applied to a real case for the long-term planning of waste management in the City of Regina, Canada.  相似文献   
213.
214.
215.
216.
For (134/137)Cs, and many other soil contaminants, research into transfer to plants has focused on particular crops and phytoremediation candidates, producing uptake data for a small proportion of all plant taxa. Despite the significance of differences in uptake between plant taxa, the capacity of soil-to-plant transfer models to predict them is currently confined to those taxa for which data exist, there being no method to predict uptake by other taxa. We used residual maximum likelihood (REML) analysis on data from experiments (including 89 plant taxa from China plus 32 phytoremediation candidates) together with data from the literature, to construct a database of relative (134/137)Cs concentrations in 273 plant taxa. The REML (134/137)Cs concentrations in plants are not normally distributed but significantly clustered. Analysis of variance (ANOVA), coded with a recent ordinal phylogeny for flowering plants, showed that plant taxa do not behave independently for (134/137)Cs concentration because 42 and 15% of inter-taxa differences are associated with phylogeny above the species and ordinal level, respectively. In general, Eudicots, and especially the Caryophyllales, Asterales, and Brassicales, have high (134/137)Cs concentrations, while the Fabales and Magnoliids, in particular Poales, have low (134/137)Cs concentrations. Plants of the stress-tolerant ruderal (S-R) growth strategy sensu Grime have, in general, high concentrations of Cs, while those of the competitive (C) and generalist (C-S-R) strategies have low concentrations, although these effects are less pronounced than those of phylogeny. Plant phylogeny and growth strategy might thus be used to predict a significant portion of inter-taxa differences in plant uptake of (134/137)Cs.  相似文献   
217.
A surface drinking water monitoring program for four corn (Zea mays L.) herbicides was conducted during 1995-2001. Stratified random sampling was used to select 175 community water systems (CWSs) within a 12-state area, with an emphasis on the most vulnerable sites, based on corn intensity and watershed size. Finished drinking water was monitored at all sites, and raw water was monitored at many sites using activated carbon, which was shown capable of removing herbicides and their degradates from drinking water. Samples were collected biweekly from mid-March through the end of August, and twice during the off-season. The analytical method had a detection limit of 0.05 microg L(-1) for alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide] and 0.03 microg L(-1) for acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide]. Of the 16528 drinking water samples analyzed, acetochlor, alachlor, atrazine, and metolachlor were detected in 19, 7, 87, and 53% of the samples, respectively. During 1999-2001, samples were also analyzed for the presence of six major degradates of the chloroacetanilide herbicides, which were detected more frequently than their parent compounds, despite having higher detection limits of 0.1 to 0.2 microg L(-1). Overall detection frequencies were correlated with product use and environmental fate characteristics. Reservoirs were particularly vulnerable to atrazine, which exceeded its 3 microg L(-1) maximum contaminant level at 25 such sites during 1995-1999. Acetochlor annualized mean concentrations (AMCs) did not exceed its mitigation trigger (2 microg L(-1)) at any site, and comparisons of observed levels with standard measures of human and ecological hazards indicate that it poses no significant risk to human health or the environment.  相似文献   
218.
To predict the availability of metals to plants, it is important to understand both solution- and solid-phase processes in the soil, including the kinetics of metal release from its binding agent (ligand and/or particle). The present study examined the speciation and availability of Zn, Cd, Pb, and Cu in a range of well-equilibrated metal-contaminated soils from diverse sources using several techniques as a basis for predicting metal uptake by plants. Wheat (Triticum aestivum L.) was grown in 13 metal-contaminated soils and metal tissue concentrations (Zn, Cd, Pb, and Cu) in plant shoots were compared with total soil metal concentrations, total soluble metal, and free metal activities (pM2+) in soil pore waters, 0.01 M CaCl2-extractable metal concentrations, E values measured by isotope dilution, and effective metal concentrations, C(E), measured by diffusive gradients in thin films (DGT). In the DGT technique, ions are dynamically removed by their diffusion through a gel to a binding resin, while E values represent the isotopically exchangeable (labile) metal pools. Free metal activities (Zn2+, Cd2+, and Pb2+) in soil pore waters were determined using a Donnan dialysis technique. Plant Zn and Cd concentrations were highly related to C(E), while relationships for Zn and Cd with respect to the other measures of metals in the soils were generally lower, except for CaCl2-extractable Cd. These results suggest that the kinetically labile solid-phase pool of metal, which is included in the DGT measurement, played an important role in Zn and Cd uptake by wheat along with the labile metal in soil solution. Plant Pb concentrations were highly related to both soil pore water concentrations and C(E), indicating that supply from the solid phase may not be so important for Pb. Predictions of Cu uptake by wheat from these soils by the various measures of Cu were generally poor, except surprisingly for total Cu.  相似文献   
219.
Substantial amounts of NO3 from agricultural crop production systems on poorly drained soils can be transported to surface water via subsurface drainage. A field study was conducted from the fall of 1993 through 2000 on a tile-drained Canisteo clay loam soil (fine-loamy, mixed, superactive, calcareous, mesic Typic Endoaquoll) to determine the influence of fall vs. spring application of N and nitrapyrin [NP; 2-chloro-6-(trichloromethyl) pyridine] on NO3 losses from a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Four anhydrous ammonia treatments (fall N, fall N + NP, spring preplant N, and spring N + NP) were replicated four times and applied at 135 kg N ha(-1) for corn on individual drainage plots. Drainage occurred in all seven years. Seventy-one percent of the annual drainage and 75% of the annual NO3 loss occurred in April, May, and June. Fifty-four percent of the NO3 lost in the drainage occurred during the corn phase and 46% during the soybean phase. Annual flow-weighted NO3-N concentrations for the fall, fall + NP, spring, and spring + NP treatments averaged 14.3, 11.5, 10.7, and 11.3 mg L(-1) during the corn phase but annual NO3-N concentrations were still > or =10 mg L(-1) in three of six years for the spring preplant treatment. Averaged across the six rotation cycles, flow-normalized NO3-N losses ranked in the order: fall N > spring N + NP > fall N + NP > spring N. Under these conditions, NO3 losses in subsurface drainage from a corn-soybean rotation can be reduced 14% by spring N and 10% by late fall N + NP compared with fall-applied N. Nitrate losses were not appreciably reduced by adding NP to spring preplant N.  相似文献   
220.
Modifying poultry diets by reducing mineral P supplementation and/or adding phytase may change the chemical composition of P in manures and affect the mobility of P in manure-amended soils. We studied the speciation of P in manures produced by broiler chickens and turkeys from either normal diets, or diets with reduced amounts of non-phytate phosphorus (NPP) and/or phytase, using a combination of chemical fractionation and synchrotron X-ray absorption near edge structure (XANES) spectroscopy. All broiler litters were rich in dicalcium phosphate (65-76%), followed by aqueous phosphate (13-18%), and phytic acid (7-20%); however, no hydroxylapatite was observed. Similarly, normal turkey manure had 77% of P as dicalcium phosphate and had no hydroxylapatite, while turkey manure from diets that had reduced NPP and phytase contained equal proportions of dicalcium phosphate (33-45%) and hydroxylapatite (35-39%). This is attributed to the higher total Ca to P ratio (>2) in modified turkey manures that resulted in transformation of more soluble (dicalcium phosphate) to less soluble P compounds (hydroxylapatite). Chemical fractionation showed that H2O-extractable P was the predominant form in broiler litter (56-77%), whereas aqueous phosphate determined with XANES was <18% indicating that H2O probably dissolved mineral forms of P (e.g., dicalcium phosphate). Results show that HCl extraction primarily removed phytic acid from broiler litters and normal turkey manure, while it removed a mixture of hydroxylapatite and phytic acid from modified turkey manures. The combination of chemical fractionation and XANES provided information about the nature of P in these manures, which may help to devise best management practices for manure use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号