首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   3篇
  国内免费   1篇
安全科学   7篇
废物处理   15篇
环保管理   19篇
综合类   13篇
基础理论   31篇
环境理论   1篇
污染及防治   40篇
评价与监测   35篇
社会与环境   5篇
灾害及防治   1篇
  2023年   3篇
  2022年   5篇
  2021年   10篇
  2020年   1篇
  2019年   3篇
  2018年   7篇
  2017年   8篇
  2016年   11篇
  2015年   6篇
  2014年   6篇
  2013年   11篇
  2012年   3篇
  2011年   9篇
  2010年   13篇
  2009年   10篇
  2008年   7篇
  2007年   7篇
  2006年   4篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  1999年   6篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1983年   1篇
  1982年   1篇
  1976年   1篇
  1968年   1篇
  1964年   1篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
71.
Nowadays, the water ecosystem is being polluted due to the rapid industrialization and massive use of antibiotics, fertilizers, cosmetics, paints, and other chemicals. Chemical oxidation is one of the most applied processes to degrade contaminants in water. However, chemicals are often unable to completely mineralize the pollutants. Enhanced pollutant degradation can be achieved by Fenton reaction and related processes. As a consequence, Fenton reactions have received great attention in the treatment of domestic and industrial wastewater effluents. Currently, homogeneous and heterogeneous Fenton processes are being investigated intensively and optimized for applications, either alone or in a combination of other processes. This review presents fundamental chemistry involved in various kinds of homogeneous Fenton reactions, which include classical Fenton, electro-Fenton, photo-Fenton, electro-Fenton, sono-electro-Fenton, and solar photoelectron-Fenton. In the homogeneous Fenton reaction process, the molar ratio of iron(II) and hydrogen peroxide, and the pH usually determine the effectiveness of removing target pollutants and subsequently their mineralization, monitored by a decrease in levels of total organic carbon or chemical oxygen demand. We present catalysts used in heterogeneous Fenton or Fenton-like reactions, such as H2O2–Fe3+(solid)/nano-zero-valent iron/immobilized iron and electro-Fenton-pyrite. Surface properties of heterogeneous catalysts generally control the efficiency to degrade pollutants. Examples of Fenton reactions are demonstrated to degrade and mineralize a wide range of water pollutants in real industrial wastewaters, such as dyes and phenols. Removal of various antibiotics by homogeneous and heterogeneous Fenton reactions is exemplified.  相似文献   
72.
In the present study, influence of talc on thermal, mechanical and rheological behavior of PLA is investigated and the structure?Cproperty correlation for the PLA/talc composites is established. Poly(lactic acid)/talc composites are prepared by melt mixing of PLA with talc in twin screw extruder followed by blown film processing. Various characterizations techniques are used to evaluate thermal, morphological, mechanical and rheological behavior of PLA/talc composites and its blown film. DSC analysis showed that degree of crystallinity of PLA/talc composites was higher than that of neat PLA because of nucleating ability of talc. Spherulite morphology of PLA/talc composites showed that talc has increased nucleation density of spherulite having smaller radius than that of neat PLA. Talc is effective in enhancing tensile modulus and storage modulus of PLA due to reinforcing ability of talc particles.  相似文献   
73.
Six soil samples (Pantnagar, Chamoli, Almora, Ranichauri, Pithoragarh and Badrinath) belonging to different geographical locations of Western Himalayas in India, were analyzed to diversify the nitrogen fixing bacterial community using nifH gene biomarker DNA from soil samples were isolated and amplified using nifH gene specific primers. Genomic DNA and PCR amplified products were then individually subjected to restriction digestion with tetra to octacutter enzymes (AluI, MspI, BgIII, XbaI, HindIII, HaeIII, AluI, MspI and PasI. Further restriction pattern was studied by preparing dendograms on the basis of similarity matrix and compared for the nifH community. It was observed that temperate region soils (Ranichauri and Pithoragarh) were negative for nifH marker while subalpine region (Badrinath) and tarai region soils (Pantnagar) documented similar nifH community. Moreover; the direct genomic DNA restriction analysis indicated that subalpine region soil (Badrinath) was most diversified.  相似文献   
74.
This study evaluates the health risks in megacities in terms of mortality and morbidity due to air pollution. A new spreadsheet model, Risk of Mortality/Morbidity due to Air Pollution (Ri-MAP), is used to estimate the excess numbers of deaths and illnesses. By adopting the World Health Organization (WHO) guideline concentrations for the air pollutants SO2, NO2 and total suspended particles (TSP), concentration-response relationships and a population attributable-risk proportion concept are employed. Results suggest that some megacities like Los Angeles, New York, Osaka Kobe, Sao Paulo and Tokyo have very low excess cases in total mortality from these pollutants. In contrast, the approximate numbers of cases is highest in Karachi (15,000/yr) characterized by a very high concentration of total TSP (~670 μg m?3). Dhaka (7000/yr), Beijing (5500/yr), Karachi (5200/yr), Cairo (5000/yr) and Delhi (3500/yr) rank highest with cardiovascular mortality. The morbidity (hospital admissions) due to Chronic Obstructive Pulmonary Disease (COPD) follows the tendency of cardiovascular mortality. Dhaka and Karachi lead the rankings, having about 2100/yr excess cases, while Osaka-Kobe (~20/yr) and Sao Paulo (~50/yr) are at the low end of all megacities considered. Since air pollution is increasing in many megacities, and our database of measured pollutants is limited to the period up to 2000 and does not include all relevant components (e.g. O3), these numbers should be interpreted as lower limits. South Asian megacities most urgently need improvement of air quality to prevent excess mortality and morbidity due to exceptionally high levels of air pollution. The risk estimates obtained from Ri-MAP present a realistic baseline evaluation for the consequences of ambient air pollution in comparison to simple air quality indices, and can be expanded and improved in parallel with the development of air pollution monitoring networks.  相似文献   
75.
76.
The present work investigated the levels of total volatile organic compounds (TVOC) and benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX) in different microenvironments in the library of Jawaharlal Nehru University in summer and winter during 2011–2012. Carcinogenic and non-carcinogenic health risks due to organic compounds were also evaluated using US Environmental Protection Agency (USEPA) conventional approaches. Real-time monitoring was done for TVOC using a data-logging photo-ionization detector. For BTEX measurements, the National Institute for Occupational Safety and Health (NIOSH) standard method which consists of active sampling of air through activated charcoal, followed by analysis with gas chromatography, was performed. Simultaneously, outdoor measurements for TVOC and BTEX were carried out. Indoor concentrations of TVOC and BTEX (except benzene) were higher as compared to the outdoor for both seasons. Toluene and m/p-xylene were the most abundant organic contaminant observed in this study. Indoor to outdoor (I/O) ratios of BTEX compounds were generally greater than unity and ranged from 0.2 to 8.7 and 0.2 to 4.3 in winter and summer, respectively. Statistical analysis and I/O ratios showed that the dominant pollution sources mainly came from indoors. The observed mean concentrations of TVOC lie within the second group of the Molhave criteria of indoor air quality, indicating a multifactorial exposure range. The estimated lifetime cancer risk (LCR) due to benzene in this study exceeded the value of 1?×?10?6 recommended by USEPA, and the hazard quotient (HQ) of non-cancer risk came under an acceptable range.  相似文献   
77.
A multivariate time series approach vector autoregression (VAR) along with impulse response function and variance decomposition technique has been employed to look into the interrelationship among O3, NO, NO2, and volatile organic compounds (VOCs, namely, benzene, ethylbenzene, toluene, and xylene in the present study) using 3 months long continuous time series data of 1 h average concentration of these pollutants at one of the traffic sites in Delhi, India. It is found that the VAR of order 2 (i.e., past two lagged values of 1 h interval) is sufficient to represent the observed time series at the station studied. The impulse response function and variance decomposition analysis indicate that O3 concentration shows an immediate rise and persists for a longer duration (typically 8–10 h) once the impulse of NO2, benzene, ethylbenzene, or xylene is given in the ambient environment. However, in case of toluene, the reverse effect has been observed. Since O3 forms in the troposphere due to photolysis of NO2, it is not surprising that its impulse triggers O3 formation in the ambient environment. However, in case of VOCs, this has been attributed to their tendency to show higher inclination toward intermediary reactions leading to the formation of O3 rather than their (VOCs) reaction with O3. Among VOCs, only toluene has been observed to show higher inclination toward its reaction with O3. Apart from this, variance decomposition technique also reveals that the relation of NO with NO2 is more important than the relation of NO with O3 creating a conducive atmosphere for O3 formation in the present scenario. Thus, the multivariate time series approach provides significant insight about the role played by the dominant individual VOCs and NO x in influencing the O3 concentration in ambient urban atmosphere whereas a photochemical modeling approach gives an overall view of NO x and VOCs behavior with respect to O3 by using the O3 isopleth technique.  相似文献   
78.
The ground water quality of District Nainital (Uttarakhand, India) has been assessed to see the suitability of ground water for drinking and irrigation applications. This is a two-part series paper and this paper examines the suitability of ground water including spring water for drinking purposes. Forty ground water samples (including 28 spring samples) were collected during pre- and post-monsoon seasons and analyzed for various water quality constituents. The hydrochemical and bacteriological data was analyzed with reference to BIS and WHO standards and their hydrochemical facies were determined. The concentration of total dissolved solids exceeds the desirable limit of 500 mg/L in about 10% of the samples, alkalinity values exceed the desirable limit of 200 mg/L in about 30% of the samples, and total hardness values exceed the desirable limit of 300 mg/L in 15% of the samples. However, no sample crosses the maximum permissible limit for TDS, alkalinity, hardness, calcium, magnesium, chloride, sulfate, nitrate, and fluoride. The concentration of chloride, sulfate, nitrate, and fluoride are well within the desirable limit at all the locations. The bacteriological analysis of the samples does not show any sign of bacterial contamination in hand pump and tube-well water samples. However, in the case of spring water samples, six samples exceed the permissible limit of ten coliforms per 100 ml of sample. It is recommended that water drawn from such sources should be properly disinfected before being used for drinking and other domestic applications. Among the metal ions, the concentration of iron and lead exceeds the permissible limit at one location whereas the concentration of nickel exceeds the permissible limit in 60 and 32.5% of the samples during pre- and post-monsoon seasons, respectively. The grouping of samples according to their hydrochemical facies indicates that majority of the samples fall in Ca–Mg–HCO3 hydrochemical facies.  相似文献   
79.
Concentration of trace elements such as Fe, Cu, Ni, and Zn were measured in cereals, pulses, vegetables, fish, meat, milk, egg, and water samples collected around Kakrapar, Gujarat, India. A wide variation of the trace element concentration was observed among all the dietary matrices. The concentration of Fe is comparatively more in all the dietary matrices. The concentrations of these elements are translated into intake rates through ingestion pathways. Daily intake (milligrams/day) of Fe, Cu, Ni, and Zn by adult population of Kakrapar, Gujarat were 16.5 ± 6.2, 3.3 ± 1.2, 1.8 ± 1.0, and 3.6 ± 1.3, respectively. Dietary sources of Fe, Cu, and Ni by Kakrapar adult population are comparable with RDA. In case of Zn, the daily dietary intake is comparatively lower than that of RDA.  相似文献   
80.
The acoustic environment in urban areas has gained prominence in recent times due to rapid industrial and commercial development in metropolitan cities. Various attempts have been made to predict and model the trends in urban ambient noise levels using different statistical and dynamic models. The present study makes an attempt to examine the role of meteorological parameters affecting the ambient noise levels in Delhi. The results show significant improvement in overall noise scenario of Delhi since the introduction of compressed natural gas vehicles in public transport of Delhi. The noise level is significantly reduced by high vegetation cover as well as by low relative humidity over Delhi. The regression models developed for the present study clearly show the significant contribution of meteorological parameters in governing the ambient noise levels in Delhi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号