Microorganism Pseudomonas species P2 metabolizes polychlorinated biphenyls (PCBs) and biphenyl, producing the whole spectrum of intermediates, among them coloured intermediates, which are suitable for the monitoring of PCBs degradation by optical sensors. Knowledge of chemical structures and conditions of development of colour metabolites is necessary for application of optical analytical methods. The main goal of this work was the isolation and identification of intermediates from the biodegradation of the mixture of low chlorinated biphenyls (Delor-103), which is based on the solid phase extraction (SPE) of the whole mixture using LiChrolut EN cartridges, then silylation of the extract as one way to the identification of one part of intermediates by GC-MS, and acetylation of the extract as a way for the further concentration and analysis of more polar chlorobiphenylols and chlorobiphenyldiols. The combination of SPE and following acetylation allows to obtain chlorobiphenylols and chlorobiphenyldiols as an almost pure fraction. The acetylation method could be also used instead SPE procedure with the same final concentration effect. Using the simulation mass spectrometry program, two new compounds, dihydrodihydroxytrichloro- and tetrahydrodihydroxytrichlorobiphenyl, as silylderivatives, were identified. 相似文献
The effect of two terpenes, carvone and limonene, on the biodegradation of DELOR 103, a commercial mixture of polychlorinated biphenyls (PCBs), by Pseudomonas stutzeri, an isolate from long-term PCB-contaminated soil, was studied in detail. The addition of both carvone and limonene as potential inducers of the dioxygenase metabolic pathway exerted an enhancing effect on PCB biodegradation when glycerol and xylose were used as carbon sources, whereas no such effect could be determined with biphenyl and glucose as substrates. Promising biodegradation values were determined with xylose as carbon source and carvone as terpene inducer. In this system, 30-70% of the congeners were degraded in the presence of 10 mg l(-1) and 20 mg l(-1) carvone, respectively, irrespective of the used concentration, whereas only 7-37% of individual PCB congeners were eliminated from the system without terpene addition. 相似文献
In this work it was described a simple method for extraction of plasticizer compounds (mainly phthalate esters and bisphenol A (BPA)) from landfill leachate samples. The samples were submitted to an extraction procedures based on precipitation, solid phase extraction (SPE) and ionic exchange chromatography (IEC). Firstly the landfill leachate sample was acidified by addition of HCl concentrated, in order to precipitate the organic compounds that are less soluble in water. The precipitate was washed with several solvents. The aqueous phase was then submitted to SPE with XAD-4 resin and IEC with Amberlyst A-27 resin. The instrumental analysis was performed by gas chromatography with mass spectrometer detector (GC/MSD) and the compounds were identified by the GC/MSD library (Wiley) and by using some standard substances. These methodologies allow the isolation and identification of the following compounds: dioctylphthalate, diisobutilphthalate, BPA, benzoic acid, palmitic acid and diisopentylphthalate. The methods are very simple, rapid and selective, for plasticizers extraction from landfill leachate matrices. 相似文献
The photocatalytic destruction of methanol, formaline (mixture of formaldehyde, methanol and water) and formaline wastes from the preservation of vertinarian physiologic samples has been attempted by two different processes, at high concentrations of reagents and by dossification of reagents, varying pH in both. Experiment evolution has been monitored by measuring the organic matter such as TOC and formaldehyde concentrations [H2CO]. Also, methanol and methanol-formaldehyde interactions with the TiO2 surface have been analysed by FTIR spectroscopy. Results indicate that at high concentrations the catalyst surfacial alterations given by methoxy, formates or carbonates, according to the pH of the sample can profoundly affect catalyst behaviour. It has been established that reagent dossification is advantageous for enhancing photonic efficiency as it minimizes the adsorbate presence that hampers the photocatalytic process. 相似文献
Stochastic models that estimate the ground-level ozone concentrations in air at an urban and rural sampling points in South-eastern Spain have been developed. Studies of temporal series of data, spectral analyses of temporal series and ARIMA models have been used. The ARIMA model (1,0,0) x (1,0,1)24 satisfactorily predicts hourly ozone concentrations in the urban area. The ARIMA (2,1,1) x (0,1,1)24 has been developed for the rural area. In both sampling points, predictions of hourly ozone concentrations agree reasonably well with measured values. However, the prediction of hourly ozone concentrations in the rural point appears to be better than that of the urban point. The performance of ARIMA models suggests that this kind of modelling can be suitable for ozone concentrations forecasting. 相似文献
In order to study the bioaccumulation of Pb, Cr, Ni, and Zn and the stress response, the floating aquatic plant Limnobium laevigatum was exposed to increasing concentrations of a mixture of these metals for 28 days, and its potential use in the treatment of wastewater was evaluated. The metal concentrations of the treatment 1 (T1) were Pb 1 μg L−1, Cr 4 μg L−1, Ni 25 μg L−1, and Zn 30 μg L−1; of treatment 2 (T2) were Pb 70 μg L−1, Cr 70 μg L−1, Ni 70 μg L−1, and Zn 70 μg L−1; and of treatment 3 (T3) were Pb 1000 μg L−1, Cr 1000 μg L−1, Ni 500 μg L−1, and Zn 100 μg L−1, and there was also a control group (without added metal). The accumulation of Pb, Cr, Ni, and Zn in roots was higher than in leaves of L. laevigatum, and the bioconcentration factor revealed that the concentrations of Ni and Zn in the leaf and root exceeded by over a thousand times the concentrations of those in the culture medium (2000 in leaf and 6800 in root for Ni; 3300 in leaf and 11,500 in root for Zn). Thus, this species can be considered as a hyperaccumulator of these metals. In general, the changes observed in the morphological and physiological parameters and the formation of products of lipid peroxidation of membranes during the exposure to moderate concentrations (T2) of the mixture of metals did not cause harmful effects to the survival of the species within the first 14 days of exposure. Taking into account the accumulation capacity and tolerance to heavy metals, L. laevigatum is suitable for phytoremediation in aquatic environments contaminated with moderated concentrations of Cr, Ni, Pb, and Zn in the early stages of exposure.
Environmental monitoring by means of biomarker parameters assessed in different species is a useful tool. It has the advantage of providing a quantitative response as well as valuable information of ecological relevance on the chronic adverse effects caused by water pollution. The aim of this study was to assess the response of biochemical and physiological parameters of Cnesterodon decemmaculatus, a native teleost, simultaneously caught in two sites of Reconquista river, a highly polluted peri-urban river. This study compared the measured parameters with that of specimens of the same species captured in an unpolluted body water, and correlated the detected changes with the physicochemical profile of the water at each site. A comparison was made of selected parameters of gill, brain and liver and of somatic indices of fish collected from polluted and reference sites. The main parameters whose changes allowed to discriminate between sampling sites were gill (Na(+),K(+))-ATPase, brain acetylcholinesterase (AChE) and liver aminotransaminases activities; tissues' protein content and liver somatic index (LSI) were also sensitive biomarkers in brain and liver, respectively. The results showed that the response of the measured biomarkers allowed for the differentiation of sampling sites according to their water quality and confirmed that Cnesterodon decemmaculatus may be a useful test organism for the biomonitoring of freshwater environments. In addition, the simultaneous measurement of the physicochemical parameters of the water samples showed a good correspondence between the biomarkers responses and the environmental chemical stress conditions. 相似文献
Leachates from municipal solid waste (MSW) landfills may contain a huge diversity of contaminants; these wastewaters should be considered as potentially hazardous complex mixtures, representing a potential environmental risk for surface and groundwater. Current MSW landfill wastes regulatory approaches deem exclusively on the physicochemical characterization and does not contemplate the ecotoxicological assessment of landfill leachates. However, the presence of highly toxic substances in consumer products requires reconsideration on the need of more specific ecotoxicological assessments. The main aim of this study was to evaluate the toxicity of different MSW landfill leachates using a battery of toxicity tests including acute toxicity tests with Daphnia magna and the anuran Xenopus laevis and the in vitro toxicity test with the fish cell line RTG-2. The additional objective was to study the possible correlation between physicochemical properties and the toxicity results obtained for untreated landfill leachates. The results showed that the proposed test battery was effective for the ecotoxicological characterization of MSW landfill leachates. A moderate to strong correlation between the measured physicochemical parameters and the calculated toxicity units was detected for all toxicity assays. Correlation factors of 0.85, 0.86 and 0.55 for Daphnia, Xenopus and RTG-2 tests, respectively, were found. The discriminant analysis showed that certain physicochemical parameters could be used for an initial categorization of the potential aquatic acute toxicity of leachates; this finding may facilitate leachates management as the physicochemical characterization is currently the most common or even only monitoring method employed in a large majority of landfills. Ammonia, alkalinity and chemical oxygen demand (COD), together with chloride, allowed a proper categorization of leachates toxicity for up to 75% of tested samples, with a small percentage of false negatives. 相似文献
Phosphorus (P) recovery and recycling play a crucial role in improving resource efficiency, sustainable nutrient management and moving toward circular economy. Increasing demand for fertilizers, signs of geopolitical constraints, and high discharge of P to waterbodies are the other reasons to pursue the circularity of P. Various research have been carrying out and several processes have been developed for P-recovery from different resources. However, there is still a huge unexplored potential for P-recovery specially in the regional framework from the four main P-rich waste resources: food waste, manure, mining waste, and sewage sludge. This study reviews recovery methods of P from these secondary resources comprehensively. Additionally, it analyzes the Nordic viewpoint of P-cycle by evaluating Nordic reserves, demands, and secondary resources to gain a systematic assessment of how Nordic countries could move toward circular economy of P. Results of this study show that secondary resources of P in Nordic countries have the potential of replacing mineral fertilizer in these countries to a considerable extent. However, to overcome the challenges of P-recovery from studied resources, policymakers and researchers need to take decisions and make innovation along each other to open the new possibilities for Nordic economy.