Stream water samples were collected over a range of hydrologic and seasonal conditions at three forested watersheds in the northeastern USA. Samples were analyzed for dissolved total mercury (THgd), DOC concentration and DOC composition, and UV254 absorbance across the three sites over different seasons and flow conditions. Pooling data from all sites, we found a strong positive correlation of THgd to DOC (r2 = 0.87), but progressively stronger correlations of THgd with the hydrophobic acid fraction (HPOA) of DOC (r2 = 0.91) and with UV254 absorbance (r2 = 0.92). The strength of the UV254 absorbance-THgd relationship suggests that optical properties associated with dissolved organic matter may be excellent proxies for THgd concentration in these streams. Ease of sample collection and analysis, the potential application of in-situ optical sensors, and the possibility for intensive monitoring over the hydrograph make this an effective, inexpensive approach to estimate THgd flux in drainage waters. 相似文献
Waite, Ian R., Jonathan G. Kennen, Jason T. May, Larry R. Brown, Thomas F. Cuffney, Kimberly A. Jones, and James L. Orlando, 2012. Comparison of Stream Invertebrate Response Models for Bioassessment Metrics. Journal of the American Water Resources Association (JAWRA) 48(3): 570-583. DOI: 10.1111/j.1752-1688.2011.00632.x Abstract: We aggregated invertebrate data from various sources to assemble data for modeling in two ecoregions in Oregon and one in California. Our goal was to compare the performance of models developed using multiple linear regression (MLR) techniques with models developed using three relatively new techniques: classification and regression trees (CART), random forest (RF), and boosted regression trees (BRT). We used tolerance of taxa based on richness (RICHTOL) and ratio of observed to expected taxa (O/E) as response variables and land use/land cover as explanatory variables. Responses were generally linear; therefore, there was little improvement to the MLR models when compared to models using CART and RF. In general, the four modeling techniques (MLR, CART, RF, and BRT) consistently selected the same primary explanatory variables for each region. However, results from the BRT models showed significant improvement over the MLR models for each region; increases in R2 from 0.09 to 0.20. The O/E metric that was derived from models specifically calibrated for Oregon consistently had lower R2 values than RICHTOL for the two regions tested. Modeled O/E R2 values were between 0.06 and 0.10 lower for each of the four modeling methods applied in the Willamette Valley and were between 0.19 and 0.36 points lower for the Blue Mountains. As a result, BRT models may indeed represent a good alternative to MLR for modeling species distribution relative to environmental variables. 相似文献
Objective: Evaluating the biofidelity of pedestrian finite element models (PFEM) using postmortem human subjects (PMHS) is a challenge because differences in anthropometry between PMHS and PFEM could limit a model's capability to accurately capture cadaveric responses. Geometrical personalization via morphing can modify the PFEM geometry to match the specific PMHS anthropometry, which could alleviate this issue. In this study, the Total Human Model for Safety (THUMS) PFEM (Ver 4.01) was compared to the cadaveric response in vehicle–pedestrian impacts using geometrically personalized models.
Methods: The AM50 THUMS PFEM was used as the baseline model, and 2 morphed PFEM were created to the anthropometric specifications of 2 obese PMHS used in a previous pedestrian impact study with a mid-size sedan. The same measurements as those obtained during the PMHS tests were calculated from the simulations (kinematics, accelerations, strains), and biofidelity metrics based on signals correlation (correlation and analysis, CORA) were established to compare the response of the models to the experiments. Injury outcomes were predicted deterministically (through strain-based threshold) and probabilistically (with injury risk functions) and compared with the injuries reported in the necropsy.
Results: The baseline model could not accurately capture all aspects of the PMHS kinematics, strain, and injury risks, whereas the morphed models reproduced biofidelic response in terms of trajectory (CORA score = 0.927 ± 0.092), velocities (0.975 ± 0.027), accelerations (0.862 ± 0.072), and strains (0.707 ± 0.143). The personalized THUMS models also generally predicted injuries consistent with those identified during posttest autopsy.
Conclusions: The study highlights the need to control for pedestrian anthropometry when validating pedestrian human body models against PMHS data. The information provided in the current study could be useful for improving model biofidelity for vehicle–pedestrian impact scenarios. 相似文献
Alum (aluminum sulfate) is the currently preferred chemical amendment for phosphorus (P) treatment in poultry litter (PL). Aluminum-based drinking-water treatment residuals (Al-WTRs) are the waste by-product of the drinking-water treatment process and have been effectively used to remove P from aqueous solutions, but their effectiveness in PL water extracts has not been studied in detail. Elevated cost associated with alum could be minimized by using the equally effective WTRs to remove soluble P from PL, and they can be obtained at a minimal cost from drinking-water treatment plants. 相似文献
More than 25 studies have employed land use regression (LUR) models to estimate nitrogen oxides and to a lesser extent particulate matter indicators, but these methods have been less commonly applied to ambient concentrations of volatile organic compounds (VOCs). Some VOCs have high plausibility as sources of health effects and others are specific indicators of motor vehicle exhaust. We used LUR models to estimate spatial variability of VOCs in Toronto, Canada. Benzene, n-hexane and total hydrocarbons (THC) were measured from July 25 to August 9, 2006 at 50 locations using the TraceAir organic vapor monitors. Nitrogen dioxide (NO2) was also sampled to assess its spatial pattern agreement with VOC exposures. Buffers for land use, population density, traffic density, physical geography, and remote sensing measures of greenness and surface brightness were also tested. The remote sensing measures have the highest correlations with VOCs and NO2 levels (i.e., explains >36% of the variance). Our regression models explain 66–68% of the variance in the spatial distribution of VOCs, compared to 81% for the NO2 model. The ranks of agreement between various VOCs range from 48 to 63% and increases substantially – up to 75% – for the top and bottom quartile groups. Agreements between NO2 and VOCs are much smaller with an average rank of 36%. Future epidemiologic studies may therefore benefit from using VOCs as potential toxic agents for traffic-related pollutants. 相似文献
Abstract Based on data from the 1997 Investigación sobre Materia Particulada y Deterioro Atmosférico-Aerosol and Visibility Evaluation Research (IMADA-EVER) campaign and the inorganic aerosol model ISORROPIA, the response of inorganic aerosols to changes in precursor concentrations was calculated. The aerosol behavior is dominated by the abundance of ammonia and thus, changes in ammonia concentration are expected to have a small effect on particle concentrations. Changes in sulfate and nitrate are expected to lead to proportional reductions in inorganic fine particulate matter (PM2.5). Comparing the predictions of ISORROPIA with the observations, the lowest bias and error are achieved when the aerosols are assumed to be in the efflorescence branch. Including crustal species reduces the bias and error for nitrate but does not improve overall model performance. The estimated response of inorganic PM2.5 to changes in precursor concentrations is affected by the inclusion of crustal species in some cases, although average responses are comparable with and without crustal species. Observed concentrations of particle chloride suggest that gas phase concentrations of hydrogen chloride may not be negligible, and future measurement campaigns should include observations to test this hypothesis. Our ability to model aerosol behavior in Mexico City and, thus, design control strategies, is constrained primarily by a lack of observations of gas phase precursors. Future campaigns should focus in particular on better understanding the temporal and spatial distribution of ammonia concentrations. In addition, gas phase observations of nitric acid are needed, and a measure of particle water content will allow stable versus metastable aerosol behavior to be distinguished. 相似文献
This investigation was conducted to evaluate experimental determination of specific gravity (Gs) of municipal solid waste (MSW). Water pycnometry, typically used for testing soils was adapted for testing MSW using a large flask with 2000 mL capacity and specimens with 100–350 g masses. Tests were conducted on manufactured waste samples prepared using US waste constituent components; fresh wastes obtained prior and subsequent to compaction at an MSW landfill; and wastes obtained from various depths at the same landfill. Factors that influence specific gravity were investigated including waste particle size, compaction, and combined decomposition and stress history. The measured average specific gravities were 1.377 and 1.530 for as-prepared/uncompacted and compacted manufactured wastes, respectively; 1.072 and 1.258 for uncompacted and compacted fresh wastes, respectively; and 2.201 for old wastes. The average organic content and degree of decomposition were 77.2% and 0%, respectively for fresh wastes and 22.8% and 88.3%, respectively for old wastes. The Gs increased with decreasing particle size, compaction, and increasing waste age. For fresh wastes, reductions in particle size and compaction caused occluded intraparticle pores to be exposed and waste particles to be deformed resulting in increases in specific gravity. For old wastes, the high Gs resulted from loss of biodegradable components that have low Gs as well as potential access to previously occluded pores and deformation of particles due to both degradation processes and applied mechanical stresses. The Gs was correlated to the degree of decomposition with a linear relationship. Unlike soils, the Gs for MSW was not unique, but varied in a landfill environment due both to physical/mechanical processes and biochemical processes. Specific gravity testing is recommended to be conducted not only using representative waste composition, but also using representative compaction, stress, and degradation states. 相似文献
Wetland biomonitoring approaches are needed to determine when changes in response to stressors are occurring and to predict the consequences of proposed land-use changes. These approaches require an understanding of shifts in biota that occur in response to land-use, data that are lacking for most kinds of wetlands. Changes in floristic composition corresponding to land-use differences at multiple scales (site to 2500 m radius) were characterized for 40 wet meadows associated with prairie glacial marshes in Minnesota (U.S.A.). In general, guild was more useful than species composition for indicating land-use impacts. Site impacts (stormwater, cultivation) and landscape disturbance (agriculture and urbanization, combined), coincide with a reduction in native graminoid and herbaceous perennial abundance (e.g., Carex lasiocarpa, Calamagrostis canadensis, Spartina pectinata). This vegetation is replaced with annuals (e.g, Bidens cernua, Polygonum pensylvanicum) in recently cultivated sites or introduced perennials (e.g., Phalaris arundinacea, Typha angustifolia) and floating aquatics (lemnids) in stormwater impacted wetlands. Ditches also reduce native perennial importance and increase perennials, but only when they are in highly impacted landscapes. 相似文献
Objectives: This paper quantifies pediatric thoracoabdominal response to belt loading to guide the scaling of existing adult response data and to assess the validity of a juvenile porcine abdominal model for application to the development of physical and computational models of the human child. Methods: Table-top belt-loading experiments were performed on 6, 7, and 15 year-old pediatric post-mortem human subjects (PMHS). Response targets are reported for diagonal belt and distributed loading of the anterior thorax and for horizontal belt loading of the abdomen. Results: The pediatric PMHS exhibited abdominal response similar to the swine, including the degree of rate sensitivity. The thoraces of the PMHS were as stiff as, or slightly more stiff than, published adult corridors. Conclusions: An assessment of age-related changes in thoracic stiffness suggests that the effective stiffness of the chest increases through the fourth decade of life and then decreases, resulting in stiffness values similar for children and elderly adults. 相似文献