首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   843篇
  免费   16篇
  国内免费   8篇
安全科学   57篇
废物处理   35篇
环保管理   136篇
综合类   86篇
基础理论   197篇
污染及防治   225篇
评价与监测   71篇
社会与环境   53篇
灾害及防治   7篇
  2023年   4篇
  2022年   4篇
  2021年   7篇
  2020年   9篇
  2019年   14篇
  2018年   14篇
  2017年   23篇
  2016年   19篇
  2015年   13篇
  2014年   14篇
  2013年   44篇
  2012年   43篇
  2011年   42篇
  2010年   34篇
  2009年   46篇
  2008年   48篇
  2007年   45篇
  2006年   36篇
  2005年   41篇
  2004年   42篇
  2003年   20篇
  2002年   33篇
  2001年   27篇
  2000年   27篇
  1999年   28篇
  1998年   11篇
  1997年   6篇
  1996年   11篇
  1995年   10篇
  1994年   18篇
  1993年   13篇
  1992年   8篇
  1991年   7篇
  1990年   12篇
  1989年   11篇
  1988年   5篇
  1987年   7篇
  1984年   4篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1980年   7篇
  1979年   4篇
  1978年   6篇
  1977年   3篇
  1976年   5篇
  1975年   4篇
  1974年   4篇
  1973年   4篇
  1972年   4篇
排序方式: 共有867条查询结果,搜索用时 15 毫秒
741.
Coarse-scale, multitemporal satellite image data were evaluated as a tool for detecting variation in vegetation productivity, as a potential indicator of change in rangeland condition in the western U.S. The conterminous U.S. Advanced Very High Resolution Radiometer (AVHRR) biweekly composite data set was employed using the six-year time series 1989–1994. Normalized Difference Vegetation Index (NDVI) image bands for the state of New Mexico were imported into a Geographic Information System (GIS) for analysis with other spatial data sets. Averaged NDVI was calculated for each year, and a series of regression analyses were performed using one year as the baseline. Residuals from the regression line indicated 14 significant areas of NDVI change: two with lower NDVI, and 11 with higher NDVI. Rangeland management changes, cross-country military training activities, and increases in irrigated cropland were among the identified causes of change.  相似文献   
742.
Regional Environmental Change - This article provides a review of recent scientific literature on social vulnerability to climate change, aiming to determine which social and demographic groups,...  相似文献   
743.
Humid dunes in the UK are at risk from nutrient pressures from multiple sources. The Water Framework Directive 2000/60/EC (WFD) requires assessment and identification of these pressures with appropriate measures defined to mitigate against further damage. We discuss the application of nitrate threshold values for the WFD classification, illustrating this with a case study at Merthyr Mawr, South Wales, where ephemeral groundwater discharge from a spring (‘Burrows Well’) sourced within the Carboniferous Limestone, creates a large dune slack. Ecological surveys suggest that the vegetation in this slack was in unfavourable condition, due to high levels of nitrate. Applying the source-pathway-receptor model an investigation was undertaken to improve the conceptual model and assess the significance of damage from groundwater derived nutrients. Results show groundwater nitrate concentrations?~?10 mg/l as NO3-N feeding the main slack waters. The vegetation survey data shows clear evidence of ecological damage, and the hydrogeological data traces the source of this back to the Carboniferous Limestone aquifer and not the overlying blown sands. Discharging groundwater is the source of the enrichment. Isotopic analysis suggests that the N is derived from inorganic fertilizer and/or atmospheric N. During the first cycle WFD characterisation the unfavourable status of the dunes due to chemical groundwater pressure resulted in a failure of the surrounding groundwater body, which was designated as poor status. The site has been re assessed for the 2nd Cycle WFD characterisation where recently developed nitrate ‘threshold’ values have been applied to assess the significance of damage for groundwater derived nutrients. The surrounding Carboniferous Limestone catchment is complex and could not be sufficiently constrained, thus land management changes could not be targeted. The paucity of historical or repeat vegetation surveys limits our ability to measure change within the dune vegetation and causes difficulties in understanding the impact of multiple pressures.  相似文献   
744.
745.
Human–wildlife conflicts are commonly addressed by excluding, relocating, or lethally controlling animals with the goal of preserving public health and safety, protecting property, or conserving other valued wildlife. However, declining wildlife populations, a lack of efficacy of control methods in achieving desired outcomes, and changes in how people value animals have triggered widespread acknowledgment of the need for ethical and evidence‐based approaches to managing such conflicts. We explored international perspectives on and experiences with human–wildlife conflicts to develop principles for ethical wildlife control. A diverse panel of 20 experts convened at a 2‐day workshop and developed the principles through a facilitated engagement process and discussion. They determined that efforts to control wildlife should begin wherever possible by altering the human practices that cause human–wildlife conflict and by developing a culture of coexistence; be justified by evidence that significant harms are being caused to people, property, livelihoods, ecosystems, and/or other animals; have measurable outcome‐based objectives that are clear, achievable, monitored, and adaptive; predictably minimize animal welfare harms to the fewest number of animals; be informed by community values as well as scientific, technical, and practical information; be integrated into plans for systematic long‐term management; and be based on the specifics of the situation rather than negative labels (pest, overabundant) applied to the target species. We recommend that these principles guide development of international, national, and local standards and control decisions and implementation.  相似文献   
746.
747.
748.
Carbon (C) emissions from anthropogenic land use have accelerated climate change. To reduce C emissions, dynamic models can be used to assess the impact of human drivers on terrestrial C sequestration. Model accuracy requires correct initialisation, since incorrect initialisation can influence the results obtained. Therefore, we sought to improve the initialisation of a process-based SOC model, RothC, which can estimate the effect of climate and land-use change on SOC. The most common initialisation involves running the model until equilibrium (‘spin-up run’), when the SOC pools stabilise (method 1). However, this method does not always produce realistic results. At our experimental sites, the observed SOC was not at equilibrium after 10 years, suggesting that the commonly used spin-up initialisation method assuming equilibrium might be improved. In addition to method 1, we tested two alternative initialisations for RothC that involved adjusting the total or individual SOC pool equilibrium values by regulating the C input during the entire spin-up initialisation period (method 2) and initialising each SOC pool with recently measured SOC values obtained by SOC fractionation (method 3). Analysis of the simulation accuracy for each model initialisation, quantified using the root mean square error (RMSE), indicated that a variant of method 2 that involved adjusting the equilibrium total SOC to observed values (method 2-T) generally showed less variation in the individual SOC pools and total SOC. Furthermore, as total SOC is the sum of all SOC pools, and because total SOC data are more readily available than the individual SOC pool data, we conclude that method 2-T is best for initialising RothC.  相似文献   
749.
Electrical resistance heating (ERH) is a common method of remediation for volatile organic compounds in unconsolidated soils, both above and below the water table. In the past eight years, ERH has been used to successfully treat 10 or more contaminated sedimentary bedrock sites. Sedimentary bedrock treatment has recently expanded to greater depths and into karst limestone environments. This article describes the implementation issues for rock remediation and provides case studies of three sites remediated by ERH in Pennsylvania and Alabama. With proper design, the remediation of sedimentary bedrock can be completed as effectively as the remediation of overburden materials. © 2014 Wiley Periodicals, Inc.  相似文献   
750.
An irrigation runoff study on a residential lawn was conducted in California, northeast of Sacramento, during the summer and fall of 2008 to investigate the contribution of turf uses of pyrethroids to residues in Californian urban creek sediments. This study examined how over irrigation (i.e., irrigation that produces runoff) in the summer season may transport recently applied pyrethroids. The study included liquid and granular applications of both bifenthrin [(2-methyl-3-phenyl-phenyl) methyl 3-(2-chloro-3,3,3-trifluoro-prop-1-enyl)-2,2-dimethyl-cyclopropane-1-carboxylate] and beta-cyfluthrin [Cyano(4-fluoro-3-phenoxyphenyl)methyl 3-(2,2-dichloroethenyl)-2,2-dimethyl-cyclopropanecarboxylate]. Generally, runoff did not occur at irrigation rates of 2.03 cm/h (0.8 in/h) but did occur when the irrigation rates were increased to about 3.81 cm/h (1.5 in/h), generating chemical losses in the first runoff event of up to 0.58 and 0.08% of applied for beta-cyfluthrin and bifenthrin, respectively. Chemical runoff losses dropped significantly between over-irrigation events with the third over-irrigation event chemical runoff losses representing 0.026 and 0.015% of applied for beta-cyfluthrin and bifenthrin, respectively. Runoff losses were generally less for liquid formulations than granular formulations but within a factor of three. Additionally, the study included a simulated winter rainstorm 8 wk after application. The low runoff losses from turf seen in this study suggest that other sources could be contributing to observed residues in urban streams. Other sources could include pyrethroids ending up on impervious surfaces, such as concrete driveways from off-target applications to turf, spills, and other poor handling practices, or pyrechroids applied directly to impervious surfaces for insect control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号