首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   446篇
  免费   11篇
  国内免费   4篇
安全科学   22篇
废物处理   15篇
环保管理   71篇
综合类   90篇
基础理论   58篇
污染及防治   142篇
评价与监测   36篇
社会与环境   18篇
灾害及防治   9篇
  2023年   4篇
  2022年   9篇
  2021年   4篇
  2020年   7篇
  2019年   4篇
  2018年   12篇
  2017年   17篇
  2016年   9篇
  2015年   9篇
  2014年   15篇
  2013年   51篇
  2012年   20篇
  2011年   30篇
  2010年   14篇
  2009年   9篇
  2008年   25篇
  2007年   23篇
  2006年   20篇
  2005年   26篇
  2004年   19篇
  2003年   22篇
  2002年   18篇
  2001年   11篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   9篇
  1995年   5篇
  1994年   7篇
  1993年   4篇
  1992年   2篇
  1991年   8篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1969年   1篇
  1964年   5篇
  1963年   1篇
  1962年   2篇
  1961年   2篇
  1960年   1篇
排序方式: 共有461条查询结果,搜索用时 15 毫秒
31.
Street sweeping is often proposed as a means of reducing the emissions from paved roads. The objective of this study was to evaluate the effectiveness of street sweeping on ambient particulate matter concentrations and to determine the difference In source contributions to PM10 concentrations between street sweeping and non-street sweeping periods.

Chemically-speciated measurements of PM10 and PM2.5 were taken in the commercial section of Reno, Nevada, for a one-month sampling period. The Chemical Mass Balance (CMB) model was applied to these data and an average of approximately 50 percent of the PM10 was apportioned to resuspended geological material. During half of the sampling period, streets In the vicinity of the sampling site were completely swept with a regenerative-air vacuum sweeper, while no sweeping was performed during the remainder of the experiment. Ratios of primary geological contributions divided by primary motor vehicle contributions to PM10 were compared between sweeping and non-sweeping periods using analysis of variance. This ratio of source contributions minimizes the effects of variations in traffic volume and meteorological dispersion. No significant differences in geological contributions to PM10 were detected as a result of regenerative-air vacuum street sweeping.  相似文献   
32.
ABSTRACT

Aerosol light absorption as black carbon (BC) was measured from November 19, 1995, to February 6, 1996, at a location 0.65 km downwind of the center of McMurdo Station on the Antarctic coast. The results show a bimo-dal frequency distribution of BC concentrations. Approximately 65% of the measurements were found in a mode at a low range of concentrations centered at ~20 ng/m3. These concentrations are higher than those found at other remote Antarctic locations and probably represent contamination from the station. The remaining measurements were in a high-concentration mode (BC ~300 ng/m3), indicating direct impact of local emissions from combustion activities at the station. High values of BC were associated with winds from the direction of the station, and the BC flux showed a clear directionality. Maximum BC concentrations occurred between 7:00 and 11:00 a.m. The "polluted" mode accounted for more than 80% of the BC frequency-weighted impact at this location.  相似文献   
33.
34.
Abstract

Observations of the mass and chemical composition of particles less than 2.5 μm in aerodynamic diameter (PM2.5), light extinction, and meteorology in the urban Baltimore-Washington corridor during July 1999 and July 2000 are presented and analyzed to study summertime haze formation in the mid-Atlantic region. The mass fraction of ammoniated sulfate (SO4 2-) and carbonaceous material in PM2.5 were each ~50% for cleaner air (PM2.5 < 10 μg/m3) but changed to ~60% and ~20%, respectively, for more polluted air (PM2.5 > 30 μg/m3). This signifies the role of SO4 2- in haze formation. Comparisons of data from this study with the Interagency Monitoring of Protected Visual Environments network suggest that SO4 2? is more regional than carbonaceous material and originates in part from upwind source regions. The light extinction coefficient is well correlated to PM2.5 mass plus water associated with inorganic salt, leading to a mass extinction efficiency of 7.6 ± 1.7 m2/g for hydrated aerosol. The most serious haze episode occurring between July 15 and 19, 1999, was characterized by westerly transport and recirculation slowing removal of pollutants. At the peak of this episode, 1-hr PM2.5 concentration reached ~45 μg/m3, visual range dropped to ~5 km, and aerosol water likely contributed to ~40% of the light extinction coefficient.  相似文献   
35.
Abstract

Twenty-five MiniVol samplers were operated throughout the Mexico City metropolitan region from February 22 through March 22, 1997, to evaluate the variability of PM10 concentrations and composition. The highest PM10 concentrations were found in neighborhoods with unpaved or dirty roads, and elements related to crustal material were the main cause of differences from nearby (<200 m) monitors that were not adjacent to the roadbed. SO4 2?concentrations were homogeneous across the city. SO4 2?measured at the city boundaries was about two-thirds of the concentrations measured within the urbanized area, indicating that most SO4 2? is of regional origin. Elemental carbon (EC) and organic carbon (OC) concentrations were highly variable, with higher concentrations in areas that had high diesel traffic and older vehicles. Spatial correlations among PM10 concentrations were high, even though absolute concentrations were variable, indicating a common effect of meteorology on the concentration or dispersion of local emissions.  相似文献   
36.
Changes in ecosystem function at Rocky Mountain National Park (RMNP) are occurring because of emissions of nitrogen and sulfate species along the Front Range of the Colorado Rocky Mountains, as well as sources farther east and west. The nitrogen compounds include both oxidized and reduced nitrogen. A year-long monitoring program of various oxidized and reduced nitrogen species was initiated to better understand their origins as well as the complex chemistry occurring during transport from source to receptor. Specifically, the goals of the study were to characterize the atmospheric concentrations of nitrogen species in gaseous, particulate, and aqueous phases (precipitation and clouds) along the east and west sides of the Continental Divide; identify the relative contributions to atmospheric nitrogen species in RMNP from within and outside of the state of Colorado; identify the relative contributions to atmospheric nitrogen species in RMNP from emission sources along the Colorado Front Range versus other areas within Colorado; and identify the relative contributions to atmospheric nitrogen species from mobile sources, agricultural activities, and large and small point sources within the state of Colorado. Measured ammonia concentrations are combined with modeled releases of conservative tracers from ammonia source regions around the United States to apportion ammonia to its respective sources, using receptor modeling tools.

Implications: Increased deposition of nitrogen in RMNP has been demonstrated to contribute to a number of important ecosystem changes. The rate of deposition of nitrogen compounds in RMNP has crossed a crucial threshold called the “critical load.” This means that changes are occurring to park ecosystems and that these changes may soon reach a point where they are difficult or impossible to reverse. Several key issues need attention to develop an effective strategy for protecting park resources from adverse impacts of elevated nitrogen deposition. These include determining the importance of previously unquantified nitrogen inputs within the park and identification of important nitrogen sources and transport pathways.  相似文献   
37.
Positive matrix factorization (PMF) and effective variance (EV) solutions to the chemical mass balance (CMB) were applied to PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) mass and chemically speciated measurements for samples taken from 2008 to 2010 at the Atlanta, Georgia, and Birmingham, Alabama, sites. Commonly measured PM2.5 mass, elemental, ionic, and thermal carbon fraction concentrations were supplemented with detailed nonpolar organic speciation by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Source contribution estimates were calculated for motor vehicle exhaust, biomass burning, cooking, coal-fired power plants, road dust, vegetative detritus, and secondary sulfates and nitrates for Atlanta. Similar sources were found for Birmingham, with the addition of an industrial source and the separation of biomass burning into open burning and residential wood combustion. EV-CMB results based on conventional species were qualitatively similar to those estimated by PMF-CMB. Secondary ammonium sulfate was the largest contributor, accounting for 27–38% of PM2.5, followed by biomass burning (21–24%) and motor vehicle exhaust (9–24%) at both sites, with 4–6% of PM2.5 attributed to coal-fired power plants by EV-CMB. Including organic compounds in the EV-CMB reduced the motor vehicle exhaust and biomass burning contributions at both sites, with a 13–23% deficit for PM2.5 mass. The PMF-CMB solution showed mixing of sources within the derived factors, both with and without the addition of speciated organics, as is often the case with complex source mixtures such as those at these urban-scale sites. The nonpolar TD-GC/MS compounds can be obtained from existing filter samples and are a useful complement to the elements, ions, and carbon fractions. However, they should be supplemented with other methods, such as TD-GC/MS on derivitized samples, to obtain a wider range of polar compounds such as sterols, sugars, and organic acids. The PMF and EV solutions to the CMB equations are complementary to, rather than replacements for, each other, as comparisons of their results reveal uncertainties that are not otherwise evident.

Implications:?Organic markers can be measured on currently acquired PM2.5 filter samples by thermal methods. These markers can complement element, ion, and carbon fraction measurements from long-term speciation networks. Applying the positive matrix factorization and effective variance solutions for the chemical mass balance equations provides useful information on the accuracy of the source contribution estimates. Nonpolar compounds need to be complemented with polar compounds to better apportion cooking and secondary organic aerosol contributors.  相似文献   
38.
This paper takes a new look at the importance of context – institutional and political – in effective public engagement processes. It does so through a rare comparative opportunity to examine the effectiveness of processes of public engagement in two UK waste authorities, where the same waste company was involved as both the primary contractor for the delivery of the waste management service (including new energy-from-waste facilities) and, furthermore, the same staff delivered the public engagement. Interrogating these cases affords the opportunity to place flesh on the bones of the sometimes ‘abstract’ skeleton of context. While engagement processes support effective local governance in an era of partnerships and deliberative democracy, the paper identifies that the methods adopted cannot be played out devoid of detailed understanding and response to local context, including the strength of partnership working between the public and private sector, the degree of political support for engagement, and the extent to which a traditional institutional paternalism still dominates.  相似文献   
39.
The Minnesota Particulate Matter 2.5 (PM2.5) Source Apportionment Study was undertaken to explore the utility of PM2.5 mass, element, ion, and carbon measurements from long-term speciation networks for pollution source attribution. Ambient monitoring data at eight sites across the state were retrieved from the archives of the Interagency Monitoring of Protected Visual Environments (IMPROVE) and the Speciation Trends Network (STN; part of the Chemical Speciation Network [CSN]) and analyzed by an Effective Variance – Chemical Mass Balance (EV-CMB) receptor model with region-specific geological source profiles developed in this study. PM2.5 was apportioned into contributions of fugitive soil dust, calcium-rich dust, taconite (low grade iron ore) dust, road salt, motor vehicle exhaust, biomass burning, coal-fired utility, and secondary aerosol. Secondary sulfate and nitrate contributed strongly (49–71% of PM2.5) across all sites and was dominant (≥60%) at IMPROVE sites. Vehicle exhausts accounted for 20–70% of the primary PM2.5 contribution, largely exceeding the proportion in the primary PM2.5 emission inventory. The diesel exhaust contribution was separable from the gasoline engine exhaust contribution at the STN sites. Higher detection limits for several marker elements in the STN resulted in non-detectable coal-fired boiler contributions which were detected in the IMPROVE data. Despite the different measured variables, analytical methods, and detection limits, EV-CMB results from a nearby IMPROVE-STN non-urban/urban sites showed similar contributions from regional sources – including fugitive dust and secondary aerosol. Seasonal variations of source contributions were examined and extreme PM2.5 episodes were explained by both local and regional pollution events.  相似文献   
40.
The gold nanoparticles (Au-NPs) are being increasingly used because of their huge diversity of applications, and consequently, elevated levels in the environment are expected. However, due to their physico-chemical properties and functionalization a high variety of Au-NPs can be found, and complete toxicological information for each type of Au-NPs still lacks, and even, the toxicological information for the same species is sometimes contradictory. Therefore, hazard assessment should be done case by case. Hence, the objective of this study was to obtain ecotoxicological information of the same Au-NPs in aquatic organisms and to find a rationale for Au-NPs toxicity. For such a purpose, bare and hyaluronic acid capped Au-NPs (12.5 nm) along with Au-NPs bulk material were tested on freshwater algae, Daphnia and zebrafish. Results showed that while gold nanoparticles were found to be harmless to the tested organisms, the soluble gold showed to be toxic to algae and Daphnia, with an LC50 between 1 and 2 mg L−1. Comparing our results with those gathered in the literature, it appears that a common hazard assessment of Au-NPs on the studied organisms can be elucidated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号