首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88963篇
  免费   1222篇
  国内免费   1089篇
安全科学   3713篇
废物处理   3221篇
环保管理   13680篇
综合类   21114篇
基础理论   26129篇
环境理论   72篇
污染及防治   13968篇
评价与监测   5328篇
社会与环境   3534篇
灾害及防治   515篇
  2022年   804篇
  2021年   801篇
  2020年   645篇
  2019年   857篇
  2018年   1121篇
  2017年   1147篇
  2016年   2144篇
  2015年   1828篇
  2014年   2582篇
  2013年   9238篇
  2012年   2122篇
  2011年   2310篇
  2010年   3238篇
  2009年   3347篇
  2008年   1818篇
  2007年   1634篇
  2006年   2146篇
  2005年   2170篇
  2004年   2470篇
  2003年   2324篇
  2002年   1865篇
  2001年   2206篇
  2000年   1927篇
  1999年   1515篇
  1998年   1369篇
  1997年   1356篇
  1996年   1472篇
  1995年   1563篇
  1994年   1472篇
  1993年   1308篇
  1992年   1313篇
  1991年   1279篇
  1990年   1231篇
  1989年   1196篇
  1988年   1047篇
  1987年   968篇
  1986年   995篇
  1985年   1062篇
  1984年   1153篇
  1983年   1163篇
  1982年   1171篇
  1981年   1088篇
  1980年   941篇
  1979年   918篇
  1978年   816篇
  1977年   707篇
  1976年   636篇
  1975年   599篇
  1973年   624篇
  1972年   621篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Restoring connectivity between fragmented populations is an important tool for alleviating genetic threats to endangered species. Yet recovery plans typically lack quantitative criteria for ensuring such population connectivity. We demonstrate how models that integrate habitat, genetic, and demographic data can be used to develop connectivity criteria for the endangered Mexican wolf (Canis lupus baileyi), which is currently being restored to the wild from a captive population descended from 7 founders. We used population viability analysis that incorporated pedigree data to evaluate the relation between connectivity and persistence for a restored Mexican wolf metapopulation of 3 populations of equal size. Decreasing dispersal rates greatly increased extinction risk for small populations (<150–200), especially as dispersal rates dropped below 0.5 genetically effective migrants per generation. We compared observed migration rates in the Northern Rocky Mountains (NRM) wolf metapopulation to 2 habitat‐based effective distance metrics, least‐cost and resistance distance. We then used effective distance between potential primary core populations in a restored Mexican wolf metapopulation to evaluate potential dispersal rates. Although potential connectivity was lower in the Mexican wolf versus the NRM wolf metapopulation, a connectivity rate of >0.5 genetically effective migrants per generation may be achievable via natural dispersal under current landscape conditions. When sufficient data are available, these methods allow planners to move beyond general aspirational connectivity goals or rules of thumb to develop objective and measurable connectivity criteria that more effectively support species recovery. The shift from simple connectivity rules of thumb to species‐specific analyses parallels the previous shift from general minimum‐viable‐population thresholds to detailed viability modeling in endangered species recovery planning. Desarrollo de Criterios de Conectividad Metapoblacional a Partir de Datos Genéticos y de Hábitat para Recuperar al Lobo Mexicano en Peligro de Extinción  相似文献   
992.
993.
Conserving or restoring landscape connectivity between patches of breeding habitat is a common strategy to protect threatened species from habitat fragmentation. By managing connectivity for some species, usually charismatic vertebrates, it is often assumed that these species will serve as conservation umbrellas for other species. We tested this assumption by developing a quantitative method to measure overlap in dispersal habitat of 3 threatened species—a bird (the umbrella), a butterfly, and a frog—inhabiting the same fragmented landscape. Dispersal habitat was determined with Circuitscape, which was parameterized with movement data collected for each species. Despite differences in natural history and breeding habitat, we found substantial overlap in the spatial distributions of areas important for dispersal of this suite of taxa. However, the intuitive umbrella species (the bird) did not have the highest overlap with other species in terms of the areas that supported connectivity. Nevertheless, we contend that when there are no irreconcilable differences between the dispersal habitats of species that cohabitate on the landscape, managing for umbrella species can help conserve or restore connectivity simultaneously for multiple threatened species with different habitat requirements. Definición y Evaluación del Concepto de Especie Paraguas para Conservar y Restaurar la Conectividad de Paisajes  相似文献   
994.
995.
Conservation programs often manage populations indirectly through the landscapes in which they live. Empirically, linking reproductive success with landscape structure and anthropogenic change is a first step in understanding and managing the spatial mechanisms that affect reproduction, but this link is not sufficiently informed by data. Hierarchical multistate occupancy models can forge these links by estimating spatial patterns of reproductive success across landscapes. To illustrate, we surveyed the occurrence of grizzly bears (Ursus arctos) in the Canadian Rocky Mountains Alberta, Canada. We deployed camera traps for 6 weeks at 54 surveys sites in different types of land cover. We used hierarchical multistate occupancy models to estimate probability of detection, grizzly bear occupancy, and probability of reproductive success at each site. Grizzly bear occupancy varied among cover types and was greater in herbaceous alpine ecotones than in low‐elevation wetlands or mid‐elevation conifer forests. The conditional probability of reproductive success given grizzly bear occupancy was 30% (SE = 0.14). Grizzly bears with cubs had a higher probability of detection than grizzly bears without cubs, but sites were correctly classified as being occupied by breeding females 49% of the time based on raw data and thus would have been underestimated by half. Repeated surveys and multistate modeling reduced the probability of misclassifying sites occupied by breeders as unoccupied to <2%. The probability of breeding grizzly bear occupancy varied across the landscape. Those patches with highest probabilities of breeding occupancy—herbaceous alpine ecotones—were small and highly dispersed and are projected to shrink as treelines advance due to climate warming. Understanding spatial correlates in breeding distribution is a key requirement for species conservation in the face of climate change and can help identify priorities for landscape management and protection. Patrones Espaciales del Éxito Reproductivo de Osos Pardos, Derivados de Modelos Jerárquicos Multi‐Estado  相似文献   
996.
Scatter-hoarding passerine birds have become a model system for research on spatial memory capacity. This research has focussed on two families, the Corvidae (crows, jays, nutcrackers, etc.) and the Paridae (titmice and chickadees). Corvids are considered to have highly developed cognitive skills that sometimes have been compared with the great apes. Even though pilfering, or stealing of caches made by others, is common among scatter-hoarding birds, the ability to memorize positions of caches made by others has only been demonstrated in some species of corvids. In parids, the ability to memorize positions of caches made by others has not been demonstrated. In a laboratory experiment, we allowed caged great tits to observe caching marsh tits and found that they remembered caching locations both 1 and 24 h after observation. This is the first time observational spatial learning of this type explicitly has been demonstrated in a parid. This ability is surprising since the great tit is not itself a food hoarder, meaning that it may not have the special memory adaptations in the brain that specialized food hoarders possess. Also, the memorization process in an observing pilferer may differ from the memorization that hoarders make of own caches. For example, the typical close inspection of the cache that hoarding parids do after caching will usually not be possible from a distance. Also, the visual perspective of the observing scrounger may be different from that of the hoarder, meaning that some understanding of allocentric space may be required.  相似文献   
997.
Reef‐fish management and conservation is hindered by a lack of information on fish populations prior to large‐scale contemporary human impacts. As a result, relatively pristine sites are often used as conservation baselines for populations near sites affected by humans. This space‐for‐time approach can only be validated by sampling assemblages through time. We used archaeological remains to evaluate whether the remote, uninhabited Northwestern Hawaiian Islands (NWHI) might provide a reasonable proxy for a lightly exploited baseline in the Main Hawaiian Islands (MHI). We used molecular and morphological techniques to describe the taxonomic and size composition of the scarine parrotfish catches present in 2 archaeological assemblages from the MHI, compared metrics of these catches with modern estimates of reproductive parameters to evaluate whether catches represented by the archaeological material were consistent with sustainable fishing, and evaluated overlap between size structures represented by the archaeological material and modern survey data from the MHI and the NWHI to assess whether a space‐for‐time substitution is reasonable. The parrotfish catches represented by archaeological remains were consistent with sustainable fishing because they were dominated by large, mature individuals whose average size remained stable from prehistoric (AD approximately 1400–1700) through historic (AD 1700–1960) periods. The ancient catches were unlike populations in the MHI today. Overlap between the size structure of ancient MHI catches and modern survey data from the NWHI or the MHI was an order of magnitude greater for the NWHI comparison, a result that supports the validity of using the NWHI parrotfish data as a proxy for the MHI before accelerated, heavy human impacts in modern times. Evidencia Arqueológica de la Validez de Poblaciones de Peces en Arrecifes Sin Explotar como Objetivos de Apoderamiento para Poblaciones Actuales  相似文献   
998.
999.
1000.
Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics—information that is lacking in most threat‐management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird‐population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch‐colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat‐mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号