首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9814篇
  免费   7篇
  国内免费   1篇
安全科学   22篇
废物处理   770篇
环保管理   1258篇
综合类   948篇
基础理论   3137篇
污染及防治   1759篇
评价与监测   1019篇
社会与环境   904篇
灾害及防治   5篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2019年   7篇
  2018年   1478篇
  2017年   1379篇
  2016年   1203篇
  2015年   130篇
  2014年   20篇
  2013年   20篇
  2012年   467篇
  2011年   1346篇
  2010年   698篇
  2009年   604篇
  2008年   892篇
  2007年   1232篇
  2006年   9篇
  2005年   28篇
  2004年   34篇
  2003年   69篇
  2002年   103篇
  2001年   16篇
  2000年   12篇
  1999年   4篇
  1998年   14篇
  1997年   5篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   11篇
  1983年   8篇
  1982年   3篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1935年   2篇
排序方式: 共有9822条查询结果,搜索用时 15 毫秒
931.
Increasing attention is currently given to the management of end-of-life (EoL) hybrid electric vehicles (HEVs), because approximately two decades have passed since they were first introduced to the market. A HEV would be one of the largest consumers of rare earth elements (REEs), and hence represents the greatest potential for REE recovery in the future. The purpose of this study is to clarify the present and future recovery potential of REEs that are disposed of as EoL HEVs. This study first estimated the numbers of EoL HEVs during fiscal years (FYs) 2010–2030, and then clarified the potential for recovery of REEs from two HEV-specific components—the hybrid transmission and NiMH battery unit. The results suggest that 0.51–0.65 million HEVs will reach the EoL stage in FY2030, compared with only 11,000 HEVs in FY2010. As of FY2030, REE recovery potentials will increase to 220 tons and 2900 tons for EoL hybrid transmission and NiMH battery units, respectively. A total of 49,000 tons of REEs will be contained within HEV-specific components of HEVs still in use. Moreover, the potential for recovery of REEs from EoL hybrid transmissions and NiMH battery units is estimated to equal 35.4 and 92.1 % of respective demand.  相似文献   
932.
Sb release characteristics of blast furnace slag, mining waste rock and tailing sand were investigated in static immersion and dynamic leaching test. These three kinds of waste samples were collected from the antimony mine in Lengshuijiang, China, produced in mining smelting process. Effects of solid/liquid ratio, sample size and pH of leaching solution on Sb release characteristics were inspected based on the analysis of scanning electron microscope, pH and EC of leachate. The optimal parameters for Sb leaching of each sample were analyzed. For blast furnace slag and mining waste rock, Sb release contents increased along with the decline of solid/liquid ratio. The maximum accumulative release contents were 42.13, 34.26 mg/kg at the solid/liquid ratio of 1:20. While Sb release content for tailing sand decreased first and then increased with the reduction of solid/liquid ratio. When the solid/liquid ratio was 1:5, the accumulative Sb release content reached the most (24.30 mg/kg). Sb release content of mining waste rock increased with the drop of leaching solution pH, with the highest accumulative release content of 26.01 mg/kg at pH 2.0. Sb release contents of blast furnace slag and tailing sand showed positive correlation with the variation of leaching solution pH. The maximum accumulative release contents of these two samples were 215.91 and 147.83 mg/kg, respectively, when leaching solution pH was 7.0. In summary, Sb release capacity of the three samples in descending order was tailing sand, blast furnace slag and mining waste rock. pH and EC of the leachate in dynamic test varied independently with the initial pH of leaching solution while showing close relationship with mineral hydrolysis in the waste.  相似文献   
933.
The effects of three compounded curing agents on the properties and performance of the urea-formaldehyde (UF) resin were investigated in this study. The compounded curing agents were prepared by mixing ammonium chloride with hexamethylenetetramine, citric acid, and oxalic acid respectively at a ratio of 1:1, named N-H, N–CA, and N–OA, respectively. The curing process, crystallinity, and physical properties were measured, and the three-ply plywood was fabricated to measure its prepress strength, wet shear strength, and formaldehyde emission. Results showed that the compounded curing agents N–CA and N–OA enhanced the initial viscosity, crosslinking density and thermal stability of UF resin. Additionally, the prepress strength of the plywood bonded by UF resin with N–CA and N–OA increased by 82 and 111% respectively compared to the UF resin with NH4Cl, and the wet shear strength increased by 14 and 16%, the formaldehyde emission decreased by 19 and 42% respectively. However, owing to the short pot-life of these curing agent limited their storage time, the curing agents N–CA and N–OA should be applied to fabricate plywood in winter for obtaining a better bond strength and a lower formaldehyde emission. While the UF resin with N–HT showed a suitable pot-life, so it could be applied to fabricate plywood in summer for long time storage and avoiding procuring problem.  相似文献   
934.
Poly(aspartic acid-itaconic acid) copolymers (PAI) is a new scale inhibitor for water treatment. Thus, it is necessary to investigate its biodegradability. The biodegradability of PAI was investigated through CO2 evolution tests under different conditions based on determination of carbon dioxide production. The investigation results showed that the degradation rate of PAI on day 10 and day 28 were respectively 38.7 and 79.5%, indicating that PAI was one kind of easily biodegradable scale inhibitors. With the increase in the content of itaconic acid in copolymerization process, the biodegradability of PAI was significantly reduced. In addition, the high biodegradability might be attributed to the existence of C–N bone-structure and more –COO–. Finally, Cu2+ could decrease the degradation percentage and the enzyme inhibition effect of Cu2+ was not the linear effect, but the “low-dosage effect”.  相似文献   
935.
The aim of this paper was to study the effects of reinforcing low density polyethylene (LDPE) by using bio-fillers (Doum cellulose or Shrimp chitin) on the mechanical properties. Both, Doum cellulose extracted frsom Doum leaves and Shrimp chitin extracted from shrimp co-products were compounded with LPDE without and with compatibilizer. The biocomposites were prepared by melt blending in a twin-screw extruder. Torsion and flexural tests were performed to investigate the impact of each reinforcement on the biocomposite mechanical properties. The SEM was carried out to study the filler/polymer interface adhesion. The present study has demonstrated that Doum fibers and shrimp chitin succeed in improving the mechanical properties of LPDE bio-composites. The results also showed that the use of maleic anhydride-grafted polyethylene as a compatibilizer improves filler adhesion/matrix and mechanical properties. This study exhibits that polyethylene composites based on Doum fibers or shrimp chitin can be used to replace the polyethylene materials in several fields like packaging and automotive industries.  相似文献   
936.
This study investigated the application of bamboo as a natural composite, in which its potential as a composite material had been examined for 2–6 layers. In precise, the woven bamboo (BW) formed the culm fiber composite with an average of 0.5 mm thickness and 5.0 mm width strip. In addition, this study looked into a specific type of bamboo species known as Gigantochloa Scortechinii (Buluh Semantan), which can be found in Malaysia. This laminated plain BW, which had been reinforced with epoxy (EP), was developed by applying the hand lay-up technique. After that, the specimens were characterized via mechanical analyses, for instance, tensile, flexural, hardness, and impact tests. As a result, the 2-layer BW had displayed rather excellent results chiefly due to the incorporation of epoxy composite, although this is exceptional hardness value.  相似文献   
937.
The current study is interested in evaluating the decay of cotton, Whatman and chemical pulp caused by Trichoderma harzianum and Paecilomyces variotii. The structural changes of the paper were evaluated by Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). The SEM results show differences in hyphae colonization and paper decay patterns between studied species under the current study; P. variotii caused an eroded structure in the cotton (cavity forming), whereas the initial T. harzianum colonization produced rupture and erosion (soft-rot decay type II) for the three types of paper ,the gaps were elongated with sharp pointed ends, which consisted either of individual cavities or in chains. Moreover, FTIR results confirmed that there a relationship could be observed between fungal decay and crystalline cellulose content because the intensity of peaks at 1335 and 1111 cm?1 significantly decreased due to the fungal decay. Furthermore, the intensity of O–H stretching absorption slightly decreased, and this may be attributed to hydrolysis of cellulose molecules.  相似文献   
938.
The global demand of bioplastics has lead to an exponential increase in their production commercially. Hence, biodegradable nature needs to be evaluated in various ecosystems viz. air, water, soil and other environmental conditions to avoid the polymeric waste accumulation in the nature. In this paper, we investigated the progressive response of two indigenously developed bacterial consortia, i.e., consortium-I (C-I: Pseudomonas sp. strain Rb10, Pseudomonas sp. strain Rb11 and Bacillus sp. strain Rb18), and consortium-II (C-II: Lysinibacillus sp. strain Rb1, Pseudomonas sp. strain Rb13 and Pseudomonas sp. strain Rb19), against biodegradation behavior of polyhydroxybutyrate (PHB) film composites, under natural soil ecosystem (in net house). The biodegraded films recovered after 6 and 9 months of incubation were analyzed through Fourier transform infrared spectroscopy and scanning electron microscopy to determine the variations in chemical and morphological parameters (before and after incubation). Noticeable changes in the bond intensity, surface morphology and conductivity were found when PHB composites were treated with C-II. These changes were drastic in case of blends in comparison to copolymer. The potential isolates not only survived, but, also, there was a significant increase in bacterial diversity during whole period of incubation. To the best of our knowledge, it is the first report which described the biodegradation potential of Lysinibacillus sp. as a part of C-II with Pseudomonas sp. against PHB film composites.  相似文献   
939.
Soil microbial populations can fluctuate in response to environmental changes and, therefore, are often used as biological indicators of soil quality. Soil chemical and physical parameters can also be used as indicators because they can vary in response to different management strategies. A long-term field trial was conducted to study the effects of different tillage systems (NT: no tillage, DH: disc harrow, and MP: moldboard plough), P fertilization (diammonium phosphate), and cattle grazing (in terms of crop residue consumption) in maize (Zea mays L.), sunflower (Heliantus annuus L.), and soybean (Glycine max L.) on soil biological, chemical, and physical parameters. The field trial was conducted for four crop years (2000/2001, 2001/2002, 2002/2003, and 2003/2004). Soil populations of Actinomycetes, Trichoderma spp., and Gliocladium spp. were 49% higher under conservation tillage systems, in soil amended with diammonium phosphate (DAP) and not previously grazed. Management practices also influenced soil chemical parameters, especially organic matter content and total N, which were 10% and 55% higher under NT than under MP. Aggregate stability was 61% higher in NT than in MP, 15% higher in P-fertilized soil, and also 9% higher in not grazed strips, bulk density being 12% lower in NT systems compared with MP. DAP application and the absence of grazing also reduced bulk density (3%). Using conservation tillage systems, fertilizing crops with DAP, and avoiding grazing contribute to soil health preservation and enhanced crop production.  相似文献   
940.
Assmuth T 《Ambio》2011,40(2):158-169
Policy and research issues in the framing and qualities of uncertainties in risks are analyzed, based on the assessments of dioxin-like compounds (DLCs) and other ingredients in Baltic Sea fish, a high-profile case of governance. Risks are framed broadly, to then focus on dioxins and beneficial fatty acids, fish consumption, human health, and science-management links. Hierarchies of uncertainty (data, model, decision rule, and epistemic) and ambiguity (of values) are used to identify issues of scientific and policy contestation and opportunities for resolving them. The associated complexity of risks is illustrated by risk–benefit analyses of fish consumption and by evaluations of guideline values, highlighting value contents and policy factors in presumably scientific decision criteria, and arguments used in multi-dimensional risk and benefit comparisons. These comparisons pose challenges to narrow assessments centered, for e.g., on toxicants or on food benefits, and to more many-sided and balanced risk communication and management. It is shown that structured and contextualized treatment of uncertainties and ambiguities in a reflexive approach can inform balances between wide and narrow focus, detail and generality, and evidence and precaution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号