首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3277篇
  免费   45篇
  国内免费   32篇
安全科学   175篇
废物处理   166篇
环保管理   664篇
综合类   368篇
基础理论   783篇
环境理论   6篇
污染及防治   827篇
评价与监测   228篇
社会与环境   117篇
灾害及防治   20篇
  2023年   27篇
  2022年   40篇
  2021年   26篇
  2020年   24篇
  2019年   38篇
  2018年   72篇
  2017年   71篇
  2016年   96篇
  2015年   62篇
  2014年   92篇
  2013年   308篇
  2012年   153篇
  2011年   195篇
  2010年   127篇
  2009年   129篇
  2008年   167篇
  2007年   207篇
  2006年   165篇
  2005年   124篇
  2004年   110篇
  2003年   126篇
  2002年   102篇
  2001年   72篇
  2000年   47篇
  1999年   55篇
  1998年   45篇
  1997年   47篇
  1996年   46篇
  1995年   43篇
  1994年   47篇
  1993年   38篇
  1992年   39篇
  1991年   27篇
  1990年   32篇
  1989年   21篇
  1988年   13篇
  1987年   20篇
  1986年   25篇
  1985年   21篇
  1984年   19篇
  1983年   31篇
  1982年   31篇
  1981年   25篇
  1980年   19篇
  1979年   18篇
  1977年   12篇
  1976年   9篇
  1975年   9篇
  1974年   11篇
  1971年   11篇
排序方式: 共有3354条查询结果,搜索用时 15 毫秒
961.
A variety of emerging chemicals of concern are released continuously to surface water through the municipal wastewater effluent discharges. The ability to rapidly determine bioaccumulation of these contaminants in exposed fish without sacrificing the animal (i.e. in vivo) would be of significant advantage to facilitate research, assessment and monitoring of their risk to the environment. In this study, an in vivo solid phase micro-extraction (SPME) approach was developed and applied to the measurement of a variety of emerging contaminants (carbamazepine, naproxen, diclofenac, gemfibrozil, bisphenol A, fluoxetine, ibuprofen and atrazine) in fish. Our results indicated in vivo SPME was a potential alternative extraction technique for quantitative determination of contaminants in lab exposures and as well after exposure to two municipal wastewater effluents (MWWE), with a major advantage over conventional techniques due to its ability to non-lethally sample tissues of living organisms.  相似文献   
962.
For many types of hydrophobic compounds, sorption non-linearity and solid-water distributions in the field well above expectations from organic matter partitioning models have lead to the proposition that strong adsorption to soot surfaces may not be limited to polycyclic aromatic hydrocarbons but may extend as a significant process for many aromatic compound classes. Here, the soot-water distribution coefficients (Ksc) were determined with the soot cosolvency-column method for homolog series of five polychlorinated dibenzo-p-dioxins (PCDDs), five polychlorinated dibenzofurans (PCDFs) and for two polybrominated diphenylethers (PBDEs). All compounds exhibited significantly stronger association with soot carbon than expected from estimates of their bulk organic-carbon normalized partition coefficients (Koc). The Ksc/Koc ratios (at aqueous concentrations of around 0.1-1 microg/l) were for PCDDs (up to tetrachlorination) 19-130 (median 25), for PCDFs (also up to tetrachlorination) 150-490 (median 300), and for both the tetra- and pentabrominated PBDEs a factor of 60. The particularly strong soot sorption for the PCDFs is of similar enhancement factors as previously elucidated for polycyclic aromatic hydrocarbons. Compound-class specific correlations between log Ksc and octanol-water partition coefficients (log Kow) were significant for both PCDDs and PCDFs (and with R2 > 98%). These may prove useful for anticipating variable fractions of dissolved exposures between different environmental regimes and putative remediation objects.  相似文献   
963.
Trichodiene, a volatile sesquiterpene which is structurally related to trichothecene mycotoxins, has been identified in the headspace of growing Stachybotrys chartarum by GC/MS. It is possible that volatile sesquiterpene patterns can be used to characterize S. chartarum and related mold isolates as trichothecene producers, thus providing clear criteria for decisions concerning the occupancy and renovation of contaminated buildings.  相似文献   
964.
Tasdemir Y  Odabasi M  Holsen TM 《Chemosphere》2007,66(8):1554-1560
A water surface sampler (WSS) was employed in combination with greased surface deposition plates (GSDPs) to measure the particulate dry deposition and gas exchange of polychlorinated biphenyls (PCBs) in Chicago, IL. Vapor phase PCB fluxes were calculated by subtracting the particulate fluxes obtained from GSDPs from total (particulate+gas) fluxes obtained from the WSS. Vapor phase PCB fluxes were divided by ambient air concentrations measured with a high volume sampler to calculate overall gas phase PCB mass transfer coefficients (K(G)). The calculated average PCB MTC was 0.54+/-0.47 cm s(-1). This experimentally determined average gas phase overall mass transfer coefficient, K(G), agreed well with the ones reported from studies using similar techniques and agreed well with modeled values obtained using MTC correlations developed for the WSS.  相似文献   
965.
Selected results from the degradation of reactive-dye hydrolysates after UV irradiation, ozonation and sodium peroxodisulphate (NaPS) treatment are presented. Reactive dyes with representative chromophores and anchor groups were chosen for the research project. Different stages of oxidative decolourisation were examined and determined by water parameters for biological degradation (BOD). The paper focuses on toxicity tests with Pseudomonas putida to consider whether the oxidative treatments result in products with a risk for the environment. Tests were performed with the AQUALYTIC® Sensomat System, which measures biological oxygen demand (BOD). It was determined that the chosen oxidative treatments had as a rule no bearing on respiration of P. putida. Experiments with hydrolysates after short-term UV irradiation resulted in a slightly increased but not long-lasting toxicity in comparison with treatments with ozone or NaPS. Toxic effects were found in tests with hydrolysates of metalliferous dyes. During oxidative treatment, metals were liberated from the chromophores. This did cause complete inhibition of respiration of P. putida. Dye Blue E, a member of a dye class with chlorotriazine anchor groups, was itself found to be toxic, caused by the reactivity of the anchor group. The hydrolysate is only of minor toxicity.  相似文献   
966.
The 1999/31 Elemental Carbon Directive sets strict rules on the disposal of untreated municipal solid waste in the European Union countries and forces a reduction of the biodegradable quantities disposed off to landfills up to 35% of the amount produced in 1995 in the coming decade. More environmentally friendly waste management options shall be promoted under the framework of the Community Waste Strategy ([96] 399 Final). In this context, the production and thermal use of solid recovered fuels (SRFs), derived from nonhazardous bioresidues and mixed- and mono-waste streams, could be a key element in a future waste management system. Within the scope of the European Demonstration Project, RECOFUEL, SRF cocombustion was demonstrated in two large-scale lignite-fired coal boilers at RWE power station in Weisweiler, Germany. As a consequence of the high biogenic share of the cocombusted material, this approach can be considered beneficial following European Directive 2001/77/EC on electricity from renewable energy sources (directive). During the experimental campaign, the share of SRF in the overall thermal input was adjusted to approximately 2%, resulting into a feeding rate of approximately 25 t/hr. The measurement campaign included boiler measurements in different locations, fuel and ash sampling, and its characterization. The corrosion rates were monitored by dedicated corrosion probes. The overall results showed no significant influence of SRF cocombustion on boiler operation, emissions behavior, and residues quality for the thermal shares applied. Also, no effect of the increased chlorine concentration of the recovered fuel was observed in the flue gas path after the desulfurization unit.  相似文献   
967.
The relative biomass of autotrophs (vascular plants, macroalgae, microphytobenthos, phytoplankton) in shallow aquatic ecosystems is thought to be controlled by nutrient inputs and underwater irradiance. Widely accepted conceptual models indicate that this is the case both in marine and freshwater systems. In this paper we examine four case studies and test whether these models generally apply. We also identify other complex interactions among the autotrophs that may influence ecosystem response to cultural eutrophication. The marine case studies focus on macroalgae and its interactions with sediments and vascular plants. The freshwater case studies focus on interactions between phytoplankton, epiphyton, and benthic microalgae. In Waquoit Bay, MA (estuary), controlled experiments documented that blooms of macroalgae were responsible for the loss of eelgrass beds at nutrient-enriched locations. Macroalgae covered eelgrass and reduced irradiance to the extent that the plants could not maintain net growth. In Hog Island Bay, VA (estuary), a dense lawn of macroalgae covered the bottom sediments. There was reduced sediment-water nitrogen exchange when the algae were actively growing and high nitrogen release during algal senescence. In Lakes Brobo (West Africa) and Okeechobee (FL), there were dramatic seasonal changes in the biomass and phosphorus content of planktonic versus attached algae, and these changes were coupled with changes in water level and abiotic turbidity. Deeper water and/or greater turbidity favored dominance by phytoplankton. In Lake Brobo there also was evidence that phytoplankton growth was stimulated following a die-off of vascular plants. The case studies from Waquoit Bay and Lake Okeechobee support conceptual models of succession from vascular plants to benthic algae to phytoplankton along gradients of increasing nutrients and decreasing under-water irradiance. The case studies from Hog Island Bay and Lake Brobo illustrate additional effects (modified sediment-water nutrient fluxes, allelopathy or nutrient release during plant senescence) that could play a role in ecosystem response to nutrient stress.  相似文献   
968.
To effectively use a passive sampler for monitoring trace contaminants in the gas-phase, its sampling characteristics as a function of ambient wind conditions must be known. In this study two commonly used passive samplers were evaluated using computational fluid dynamics. Contaminant uptake by the polyurethane foam (PUF) was modeled using a species transport model. The external-internal flow interactions in the sampler were characterized, and the uptake rates of contaminant species were quantified. The simulations show that flow fields in the samplers have strong velocity gradients, and single-point velocity measurements do not capture flow interactions accurately. Sampling rates calculated for a PUF in freestream are in good agreement with sampling rates for PUFs in the passive samplers studied for the same average velocity over the PUF. The calculated sampling rates are in general agreement with those obtained experimentally by other researchers.  相似文献   
969.
A long-term (28-year) data set was used to investigate historical changes in concentrations of phosphorus (P), nitrogen (N), N:P ratios, and Secchi disk transparency in a shallow subtropical lake (Lake Okeechobee, Florida, USA). The aim was to evaluate changes in the risk of N2-fixing cyanobacterial blooms, which have infrequently occurred in the lake's pelagic zone. Predictions regarding bloom risk were based on previously published N:P ratio models. Temporal trends in the biomass of cyanobacteria were evaluated using phytoplankton data collected in 1974, 1989-1992, and 1997-2000. Concentrations of pelagic total P increased from near 50 microg l-1 in the mid-1970s to over 100 microg l-1 in the late 1990s. Coincidentally, the total N:P (mass) ratio decreased from 30:1 to below 15:1, and soluble N:P ratio decreased from 15:1 to near 6:1, in the lake water. Published empirical models predict that current conditions favor cyanobacteria. The observations confirm this prediction: cyanobacteria presently account for 50-80% of total phytoplankton biovolume. The historical decrease in TN:TP ratio in the lake can be attributed to a decreased TN:TP ratio in the inflow water and to a decline in the lake's assimilation of P, relative to N. Coincident with these declines in total and soluble N:P ratios, Secchi disk transparency declined from 0.6 m to near 0.3 m, possibly due to increased mineral turbidity in the lake water. Empirical models predict that under the turbid, low irradiance conditions that prevail in this lake, non-heterocystous cyanobacteria should dominate the phytoplankton. Our observations confirmed this prediction: non-N2-fixing taxa (primarily Oscillatoria and Lyngbya spp.) typically dominated the cyanobacteria community during the last decade. The only exception was a year with very low water levels, when heterocystous N2-fixing Anabaena became dominant. In the near-shore regions of this shallow lake, low N:P ratios potentially favor blooms of N2-fixing cyanobacteria, but their occurrence in the pelagic zone is restricted by low irradiance and lack of stable stratification.  相似文献   
970.
Kannan K  Agusa T  Perrotta E  Thomas NJ  Tanabe S 《Chemosphere》2006,65(11):2160-2167
Infectious diseases have been implicated as a cause of high rates of adult mortality in southern sea otters. Exposure to environmental contaminants can compromise the immuno-competence of animals, predisposing them to infectious diseases. In addition to organic pollutants, certain trace elements can modulate the immune system in marine mammals. Nevertheless, reports of occurrence of trace elements, including toxic heavy metals, in sea otters are not available. In this study, concentrations of 20 trace elements (V, Cr, Mn, Co, Cu, Zn, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, Pb, and Bi) were measured in livers of southern sea otters found dead along the central California coast (n = 80) from 1992 to 2002. Hepatic concentrations of trace elements were compared among sea otters that died from infectious diseases (n = 27), those that died from non-infectious causes (n = 26), and otters that died in emaciated condition with no evidence of another cause of death (n = 27). Concentrations of essential elements in sea otters varied within an order of magnitude, whereas concentrations of non-essential elements varied by two to five orders of magnitude. Hepatic concentrations of Cu and Cd were 10- to 100-fold higher in the sea otters in this study than concentrations reported for any other marine mammal species. Concentrations of Mn, Co, Zn, and Cd were elevated in the diseased and emaciated sea otters relative to the non-diseased sea otters. Elevated concentrations of essential elements such as Mn, Zn, and Co in the diseased/emaciated sea otters suggest that induction of synthesis of metallothionein and superoxide dismutase (SOD) enzyme is occurring in these animals, as a means of protecting the cells from oxidative stress-related injuries. Trace element profiles in diseased and emaciated sea otters suggest that oxidative stress mediates the perturbation of essential-element concentrations. Elevated concentrations of toxic metals such as Cd, in addition to several other organic pollutants, may contribute to oxidative stress-meditated effects in sea otters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号