首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28108篇
  免费   180篇
  国内免费   98篇
安全科学   548篇
废物处理   1521篇
环保管理   3893篇
综合类   3550篇
基础理论   7870篇
环境理论   4篇
污染及防治   7019篇
评价与监测   2149篇
社会与环境   1707篇
灾害及防治   125篇
  2023年   100篇
  2022年   131篇
  2021年   182篇
  2020年   127篇
  2019年   184篇
  2018年   1657篇
  2017年   1552篇
  2016年   1551篇
  2015年   471篇
  2014年   542篇
  2013年   1630篇
  2012年   1050篇
  2011年   2070篇
  2010年   1281篇
  2009年   1285篇
  2008年   1682篇
  2007年   2051篇
  2006年   800篇
  2005年   675篇
  2004年   714篇
  2003年   700篇
  2002年   736篇
  2001年   783篇
  2000年   578篇
  1999年   323篇
  1998年   256篇
  1997年   234篇
  1996年   291篇
  1995年   274篇
  1994年   265篇
  1993年   238篇
  1992年   211篇
  1991年   195篇
  1990年   212篇
  1989年   195篇
  1988年   184篇
  1987年   179篇
  1986年   154篇
  1985年   155篇
  1984年   201篇
  1983年   190篇
  1982年   178篇
  1981年   185篇
  1980年   140篇
  1979年   164篇
  1978年   113篇
  1977年   104篇
  1975年   95篇
  1973年   95篇
  1972年   100篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
251.
Silver, both in the nano as well as in other forms, is used in many applications including antimicrobial textiles. Washing of such textiles has already been identified as an important process that results in the release of silver into wastewater. This study thus investigated the release of silver from eight different commercially available silver-textiles during a washing and rinsing cycle. The silver released was size-fractionated and characterized using electron microscopy. In addition, the antimicrobial functionality of the textiles was tested before and after washing. Three of the textiles contained nanosized silver (labeled or confirmed by manufacturers’ information), another used a metallic silver wire and four contained silver in undeclared form. The initial silver content of the textiles was between 1.5 and 2925 mg Ag/kg. Only four of the investigated textiles leached detectable amounts of silver, of which 34-80% was in the form of particles larger than 450 nm. Microscopic analysis of the particles released in the washing solutions identified Ti/Si-AgCl nanocomposites, AgCl nanoparticles, large AgCl particles, nanosilver sulfide and metallic nano-Ag, respectively. The nanoparticles were mainly found in highly agglomerated form. The identified nanotextiles showed the highest antimicrobial activity, whereas some of the other textiles, e.g. the one with a silver wire and the one with the lowest silver content, did not reduce the growth of bacteria at all. The results show that different silver textiles release different forms of silver during washing and that among the textiles investigated AgCl was the most frequently observed chemical form in the washwater.  相似文献   
252.
  总被引:3,自引:0,他引:3  
  相似文献   
253.
  总被引:1,自引:0,他引:1  
  相似文献   
254.
255.
Ozonation of oil sands process water removes naphthenic acids and toxicity   总被引:1,自引:0,他引:1  
Naphthenic acids are naturally-occurring, aliphatic or alicyclic carboxylic acids found in petroleum. Water used to extract bitumen from the Athabasca oil sands becomes toxic to various organisms due to the presence of naphthenic acids released from the bitumen. Natural biodegradation was expected to be the most cost-effective method for reducing the toxicity of the oil sands process water (OSPW). However, naphthenic acids are poorly biodegraded in the holding ponds located on properties leased by the oil sands companies. In the present study, chemical oxidation using ozone was investigated as an option for mitigation of this toxicity. Ozonation of sediment-free OSPW was conducted using proprietary technology manufactured by Seair Diffusion Systems Inc. Ozonation for 50min generated a non-toxic effluent (based on the Microtox bioassay) and decreased the naphthenic acids concentration by approximately 70%. After 130min of ozonation, the residual naphthenic acids concentration was 2mgl(-1): <5% of the initial concentration in the filtered OSPW. Total organic carbon did not change with 130min of ozonation, whereas chemical oxygen demand decreased by approximately 50% and 5-d biochemical oxygen demand increased from an initial value of 2mgl(-1) to a final value of 15mgl(-1). GC-MS analysis showed that ozonation resulted in an overall decrease in the proportion of high molecular weight naphthenic acids (n> or = 22).  相似文献   
256.

Purpose  

To protect the environmental quality of soil, groundwater, and surface water near the landfill site, it is necessary to make an accurate assessment of the heavy metal mobility. This study aims to present the bio-immobilization behavior of heavy metals in landfill and provide some reference suggestion for the manipulation of heavy metal pollution control after closure.  相似文献   
257.
Planet Earth has experienced repeated changes of its climate throughout time. Periods warmer than today as well as much colder, during glacial episodes, have alternated. In our time, rapid population growth with increased demand for natural resources and energy, has made society increasingly vulnerable to environmental changes, both natural and those caused by man; human activity is clearly affecting the radiation balance of the Earth. In the session “Climate Change and Mitigation” the speakers offered four different views on coal and CO2: the basis for life, but also a major hazard with impact on Earth’s climate. A common denominator in the presentations was that more than ever science and technology is required. We need not only understand the mechanisms for climate change and climate variability, we also need to identify means to remedy the anthropogenic influence on Earth’s climate.  相似文献   
258.
Leaves of Tendergreen bean plants exposed to atmospheric fluoride concentrations in the range 1.7 to 7.6 μg/m3 showed increased levels of enolase and catalase activity and decreased levels of pyruvate and α-ketoglutarate. Phosphoenolpyruvate carboxylase activity and oxalacetate were not affected. The leaves of Milo maize plants exposed to 5.0 μg F/m3 showed increased levels of enolase and pyruvate kinase activity and a decreased level of pyruvate. Oxalacetate and α-ketoglutarate levels were not affected. Catalase activity was increased, then decreased by IIF fumigation. The changes induced by HF were greatest six to 10 days after the start of fumigation and disappeared or decreased in magnitude during the post-fumigation period.  相似文献   
259.
260.
Predicting the soil-to-plant transfer of metals in the context of global warming has become a major issue for food safety. It requires a better understanding of how the temperature alters the bioavailability of metals in cultivated soils. This study focuses on one agricultural soil contaminated by Cd, Zn and Pb. DGT measurements were performed at 10, 20 and 30 °C to assess how the bioavailability of metals was affected by a rise in soil temperature. A lettuce crop was cultivated in the same conditions to determine if the soil-to-plant transfer of metals increased with a rise in soil temperature. A gradual decline in Cd and Zn bioavailability was observed from 10 to 30 °C, which was attributed to more intense complexation of metals in the pore water at higher temperatures. Together with its aromaticity, the affinity of dissolved organic matter (DOM) for metals was indeed suspected to increase with soil temperature. One main output of the present work is a model which satisfactorily explains the thermal-induced changes in the characteristics of DOM reported in Cornu et al. (Geoderma 162:65–70, 2011) by assuming that the mineralization of initial aliphatic compounds followed a first-order reaction, increased with soil temperature according to the Arrhenius law, and due to a priming effect, led to the appearance of aromatic molecules. The soil-to-plant transfer of Cd and Zn was promoted at higher soil temperatures despite a parallel decrease in Cd and Zn bioavailability. This suggests that plant processes affect the soil-to-plant transfer of Cd and Zn the most when the soil temperature rises.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号