首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   1篇
安全科学   1篇
废物处理   2篇
环保管理   4篇
综合类   1篇
基础理论   25篇
污染及防治   17篇
评价与监测   9篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2013年   9篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2000年   2篇
  1997年   1篇
  1989年   1篇
排序方式: 共有59条查询结果,搜索用时 265 毫秒
41.
Environmental Science and Pollution Research - This study aimed to formulate novel microbial consortia isolated from plastic garbage processing areas and thereby devise an eco-friendly approach for...  相似文献   
42.
Plants have to counteract unavoidable stress-caused anomalies such as oxidative stress to sustain their lives and serve heterotrophic organisms including humans. Among major enzymatic antioxidants, catalase (CAT; EC 1.11.1.6) and ascorbate peroxidase (APX; EC 1.11.1.11) are representative heme enzymes meant for metabolizing stress-provoked reactive oxygen species (ROS; such as H2O2) and controlling their potential impacts on cellular metabolism and functions. CAT mainly occurs in peroxisomes and catalyzes the dismutation reaction without requiring any reductant; whereas, APX has a higher affinity for H2O2 and utilizes ascorbate (AsA) as specific electron donor for the reduction of H2O2 into H2O in organelles including chloroplasts, cytosol, mitochondria, and peroxisomes. Literature is extensive on the glutathione-associated H2O2-metabolizing systems in plants. However, discussion is meager or scattered in the literature available on the biochemical and genomic characterization as well as techniques for the assays of CAT and APX and their modulation in plants under abiotic stresses. This paper aims (a) to introduce oxidative stress-causative factors and highlights their relationship with abiotic stresses in plants; (b) to overview structure, occurrence, and significance of CAT and APX in plants; (c) to summarize the principles of current technologies used to assay CAT and APX in plants; (d) to appraise available literature on the modulation of CAT and APX in plants under major abiotic stresses; and finally, (e) to consider a brief cross-talk on the CAT and APX, and this also highlights the aspects unexplored so far.  相似文献   
43.
Environmental Science and Pollution Research - Availability of lead (Pb) in soil is a major factor controlling the phytoremediation efficiency of plants. This study was focused on investigating the...  相似文献   
44.
The major and trace element component of 48 recent sediment samples in three distinct intervals (0–10, 10–20, and 20–30 cm) from Lake Ac?göl is described to present the current contamination levels and grift structure of detrital and evaporate mineral patterns of these sediments in this extreme saline environment. The spatial and vertical concentrations of major oxides were not uniform in the each subsurface interval. However, similar spatial distribution patterns were observed for some major element couples, due mainly to the detrital and evaporate origin of these elements. A sequential extraction procedure including five distinct steps was also performed to determine the different bonds of trace elements in the <?60-μ particulate size of recent sediments. Eleven trace elements (Ni, Fe, Cd, Pb, Cu, Zn, As, Co, Cr, Al and Mn) in nine surface and subsurface sediment samples were analyzed with chemical partitioning procedures to determine the trace element percentage loads in these different sequential extraction phases. The obtained accuracy values via comparison of the bulk trace metal loads with the total loads of five extraction steps were satisfying for the Ni, Fe, Cd, Zn, and Co. While, bulk analysis results of the Cu, Ni, and V elements have good correlation with total organic matter, organic fraction of sequential extraction characterized by Cu, As, Cd, and Pb. Shallow Lake Ac?göl sediment is characteristic with two different redox layer a) oxic upper level sediments, where trace metals are mobilized, b) reduced subsurface level, where the trace metals are precipitated.  相似文献   
45.
Background, aim, and scope  Improving the parameterization of processes in the atmospheric boundary layer (ABL) and surface layer, in air quality and chemical transport models. To do so, an asymmetrical, convective, non-local scheme, with varying upward mixing rates is combined with the non-local, turbulent, kinetic energy scheme for vertical diffusion (COM). For designing it, a function depending on the dimensionless height to the power four in the ABL is suggested, which is empirically derived. Also, we suggested a new method for calculating the in-canopy resistance for dry deposition over a vegetated surface. Materials and methods  The upward mixing rate forming the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. The vertical eddy diffusivity is parameterized using the mean turbulent velocity scale that is obtained by the vertical integration within the ABL. In-canopy resistance is calculated by integration of inverse turbulent transfer coefficient inside the canopy from the effective ground roughness length to the canopy source height and, further, from its the canopy height. Results  This combination of schemes provides a less rapid mass transport out of surface layer into other layers, during convective and non-convective periods, than other local and non-local schemes parameterizing mixing processes in the ABL. The suggested method for calculating the in-canopy resistance for calculating the dry deposition over a vegetated surface differs remarkably from the commonly used one, particularly over forest vegetation. Discussion  In this paper, we studied the performance of a non-local, turbulent, kinetic energy scheme for vertical diffusion combined with a non-local, convective mixing scheme with varying upward mixing in the atmospheric boundary layer (COM) and its impact on the concentration of pollutants calculated with chemical and air-quality models. In addition, this scheme was also compared with a commonly used, local, eddy-diffusivity scheme. Simulated concentrations of NO2 by the COM scheme and new parameterization of the in-canopy resistance are closer to the observations when compared to those obtained from using the local eddy-diffusivity scheme. Conclusions  Concentrations calculated with the COM scheme and new parameterization of in-canopy resistance, are in general higher and closer to the observations than those obtained by the local, eddy-diffusivity scheme (on the order of 15–22%). Recommendations and perspectives  To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO2) were compared for the years 1999 and 2002. The comparison was made for the entire domain used in simulations performed by the chemical European Monitoring and Evaluation Program Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.  相似文献   
46.
Facile, selective and sensitive spectrophotometric method has been developed for the determination of bendiocarb in its insecticidal formulations, fortified water, food grains, agriculture wastewater and agriculture soil samples with prepared reagents. The method was based on alkaline hydrolysis of the bendiocarb pesticide, and the resultant hydrolysis product of bendiocarb was coupled with 2,6-dibromo-4-methylaniline to give a yellow color product with λmaxof457 nmorcouplingwith2, 6−dibromo−4−nitroanilinetoproducearedcoloredproductwithλmax of474~nmorcouplingwith2, 4, 6−tribromoanilinetoformorangeredcoloredproducthasaλmax of465 nm.Underoptimalconditions, Beer'slawrangefor2, 6−dibromo−4−methylaniline(DBMA)wasfoundtobe0.6−−14.0~μgmL -1, 0.8−−10.0 μgmL -1 for2, 6−dibromo−4−nitroaniline(DBNA)and0.4−−10.0 μgmL -1 for2, 4, 6−tribromoaniline(TBA).Themolarabsorptivityofthecolorsystemswerefoundtobe4.126~×~104 lmol -1cm -1 forDBMA, 3.254×104 l~mol -1cm -1 forDBNAand2.812×104 lmol -1cm -1 forTBA.Sandell'softhecolorreactionsare0.018 μgcm -2(DBMA), 0.052 μgcm -2(DBNA)and0.065 μgcm -2$ (TBA) respectively. The effect of the non-target species on the determination of bendiocarb was studied. The formation of colored derivatives with the coupling agents is instantaneous and stable for 18 h, 30 h, and 12 h. Performance of the proposed methods were compared statistically in terms Student's F and t-tests with the reported methods.  相似文献   
47.
Facile, selective and sensitive spectrophotometric method has been developed for the determination of carbosulfan in insecticidal formulations, fortified water, food grains, agriculture wastewater and soil samples with newly synthesized reagents. The method was based on acid and alkaline hydrolysis of the carbosulfan pesticide, and the resultant hydrolysis product of carbosulfan was coupled with 2,6-dibromo-4-methylaniline to give a yellow color product with λ max of 464 nm or interaction with 2,6-dibromo-4-nitroaniline to produce yellow colored product with λ max of 408 nm or coupling with 2,4,6-tribromoaniline to form red colored product has a λ max of 471 nm. Under optimal conditions, Beer’s law range for 2,6-dibromo-4-methylaniline (DBMA) was found to be 0.2–12.0 μg ml−1, 0.6–16.0 μg ml−1 for 2,6-dibromo-4-nitroaniline (DBNA) and 0.4–15.0 μg ml−1 for 2,4,6-tribromoaniline (TBA). The molar absorptivity of the color systems were found to be 3.112 × 104 l mol−1 cm−1 for DBMA, 3.214 × 104 l mol−1 cm−1 for DBNA and 3.881 × 104 l mol−1 cm−1 for TBA. Sandell’s of the color reactions are 0.013 μg cm−2 (DBMA), 0.012 μg cm−2 (DBNA) and 0.011 μg cm−2 (TBA) respectively. The effect of the non-target species on the determination of carbosulfan was studied to enhance the selectivity of the proposed methods. The formation of colored derivatives with the coupling agents is instantaneous and stable for 28, 30, and 26 h. Performance of the proposed methods were compared statistically in terms Student’s F and t-tests with the reported methods. An erratum to this article can be found at  相似文献   
48.
Urbanization and industrialization has increased the strength and qualities of municipal sewage in Bangalore, India. The disposal of sewage into natural water bodies became a serious issue. Byramangala reservoir is one such habitat enormously polluted in South India. The water samples were collected from four hotspots of Byramangala tank in 3 months. The biochemical oxygen demand (BOD) and bacterial counts were determined. The fecal coliforms were identified by morphological, physiological, and biochemical studies. The antibiotics sensitivity profiling of isolated bacteria were further carried out. We have noticed that a high content of BOD in the tank in all the 3 months. The total and fecal counts were found to be varied from 1.6?×?106 to 8.2?×?106?colony forming unit/ml and >5,500/100 ml, respectively. The variations in BOD and total count were found to be statistically significant at p?>?0.05. Many pathogenic bacteria were characterized and most of them were found to be multidrug resistant. Salmonella showed resistance to cefoperazone, cefotaxime, cefixime, moxifloxacin, piperacillin/tazobactam, co-trimoxazole, levofloxacin, trimethoprim, and ceftazidime. Escherichia coli showed resistance to chloramphenicol, trimethoprim, co-trimoxazole, rifampicin, and nitrofurantoin while Enterobacter showed resistant to ampicillin, cefepime, ceftazidime, cefoperazone, and cefotaxime. Klebsiella and Shigella exhibited multiple drug resistance to conventional antibiotics. Staphylococcus showed resistance to vancomycin, methicillin, oxacillin, and tetracycline. Furthermore, Salmonella and Klebsiella are on the verge of acquiring resistance to even the strongest carbapenems-imipenem and entrapenem. Present study revealed that Byramanagala tank has become a cesspool of multidrug-resistant “superbugs” and will be major health concern in South Bangalore, India.  相似文献   
49.
Many regions in China experience air pollution episodes because of the rapid urbanization and industrialization over the past decades. Here we analyzed the effect of emission controls implemented during the G-20 2016 Hangzhou summit on air quality. Emission controls included a forced closure of highly polluting industries, and limiting traffic and construction emissions in the cities and surroundings. Particles with aerodynamic diameter lower than 2.5 μm (PM2.5) and ozone (O3) were measured. We also simulated air quality using a forecast system consisting of the two-way coupled Weather Research and Forecast and Community Multi-scale Air Quality (WRF-CMAQ) model. Results show PM2.5 and ozone levels in Hangzhou during the G-20 Summit were considerably lower than previous to the G-20 Summit. The predicted concentrations of ozone were reduced by 25.4%, whereas the predicted concentrations of PM2.5 were reduced by 56%.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号