首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
废物处理   2篇
综合类   1篇
基础理论   1篇
污染及防治   10篇
评价与监测   5篇
社会与环境   2篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  1994年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
11.
This work discusses the temporal variation of metal concentrations in a hypertrophic coastal lagoon located in the metropolitan area of Rio de Janeiro (Brazil). The lagoon watershed includes one of the mostly densely urbanized areas of the city but without industrial activities. Six sediment cores were collected in the lagoon between May and July 2003 and analyzed for the concentration of metals (Fe, Al, Mn, Zn, Pb, Cu, Cr, and Ni). Typical sedimentation rate was calculated as being 0.75 cm year???1 and was uniform for at least the past 70 years. Therefore, the alterations in the dynamics of the lagoon caused by changes in its watershed were clearly indicated in sediment cores. The construction of an artificial canal to the sea and the increasing urbanization and soil use changes were the major factors affecting metal accumulation in the lagoon sediments. Metals typical of anthropogenic urban sources (Pb, Zn, and Cu) showed increasing loads following urbanization.  相似文献   
12.
Ribeira Bay is located approximately 130 km south of the city of Rio de Janeiro and receives discharges of liquid effluent from the Angra dos Reis nuclear power plant (NPP) site, where two pressurized water reactors are located. To test whether the presence of anthropogenic radionuclides in sediments in Ribeira Bay could be correlated to the NPP operations, we sampled seven sediment cores and determined accumulation rates and chronologies. Only one sediment core did not exhibit a superficial mixing layer; this sample was used for dating purposes. Cesium-137 and 207Bi were observed in this sediment profile, but their presence was associated with atmospheric fall-out rather than the nearby NPP. The exponential decay of 210Pb concentration with sediment layer depth was verified below a superficial mixing layer for all other sediment cores. Calculated accumulation rates ranged from 1.2 mm y−1 in the inner bay to 6.2 mm y−1 close to its entrance.  相似文献   
13.
Atmospheric Hg transfer to the forest soil through litterfall was investigated in a primary rainforest at Ilha Grande (Southeast Brazil) from January to December 1997. Litter mass deposition reached 10.0 t ha−1 y−1, with leaves composing 50–84% of the total litter mass. Concentrations of Hg in the total fallen litter varied from 20 to 244 ng g−1, with higher concentrations during the dry season, between June and August (225 ± 17 ng g−1), and lower concentrations during the rainy season (99 ± 54 ng g−1). This seasonal variability was reflected in the Hg flux through litterfall, which corresponded to a Hg input to the forest floor of 122 μg m−2 y−1, with average Hg deposition of 16.5 ± 1.5 μg m−2 month−1 during and just after the dry season (June–September) and 7.0 ± 3.6 μg m−2 month−1 in the rest of the year. The variability in meteorological conditions (determining atmospheric Hg availability to foliar scavenging) may explain the pulsed pattern of Hg deposition, since litterfall temporal variability was generally unrelated with such deposition, except by a peak in litterfall production in September. Comparisons with regional data on Hg atmospheric deposition show that litterfall promotes Hg deposition at Ilha Grande two to three orders of magnitude higher than open rainfall deposition in non-industrialized areas and approximately two times higher than open rainfall deposition in industrialized areas in Rio de Janeiro State. The observed input suggests that atmospheric Hg transfer through litterfall may explain a larger fraction of the total Hg input to forest soils in Southeast Brazil than those recorded at higher latitudes.  相似文献   
14.
Batch tests and diffusion tests were performed to analyze the efficiency of a protective barrier in a landfill consisting of compacted soil with 10% bentonite compared to the results obtained for only compacted soil and for compacted soil covered with a 1-mm-thick HDPE geomembrane; the soil and leachate were collected from the Rio das Ostras Landfill in Rio de Janeiro, Brazil. The diffusion tests were performed for periods of 3, 10 and 60 days. After the test period, the soil pore water was analyzed and the profiles for chloride, potassium and ammonium were determined along a 6-cm soil depth. The results of the batch tests performed to define sorption parameters were used to adjust the profiles obtained in the diffusion cell experiment by applying an ion transfer model between the interstitial solution and the soil particles. The MPHMTP model (Multi Phase Heat and Mass Transfer Program), which is based upon the solution of the transport equations of the ionic contaminants, was used to solve the inverse problem of simultaneously determining the effective diffusion coefficients. The results of the experimental tests and of the model simulation confirmed that the compacted soil with 10% bentonite was moderately efficient in the retention of chloride, potassium and ammonium ions compared to the configurations of compacted soil with a geomembrane and compacted soil alone, representing a solution that is technically feasible and requires potentially lower costs for implementation in landfills.  相似文献   
15.
Environmental Modeling & Assessment - Subtropical estuaries such as the Vitória Island Estuarine System (VIES), located on the central coast of Brazil, are under strong anthropic pressure....  相似文献   
16.
This work reports on the effect of land use change on Hg distribution in Amazon soils. It provides a comparison among Hg concentrations and distribution along soil profiles under different land use categories; primary tropical forest, slashed forest prior to burning, a 1-year silviculture plot planted after 4 years of forest removal and a 5-year-old pasture plot. Mercury concentrations were highest in deeper (60-80 cm) layers in all four plots. Forest soils showed the highest Hg concentrations, ranging from 128 ngg(-1) at the soil surface to 150 ngg(-1) at 60-80 cm of depth. Lower concentrations were found in pasture soils, ranging from 69 ngg(-1) at the topsoil to 135 ngg(-1) at 60-80 cm of depth. Slashed and silviculture soils showed intermediate concentrations. Differences among plots of different soil-use categories decreased with soil depth, being non-significant below 60 cm of depth. Mercury burdens were only statistically significantly different between pasture and forest soils at the topsoil, due to the large variability of concentrations. Consequently, estimated Hg losses were only significant between these two land use categories, and only for the surface layers. Estimated Hg loss due to forest conversion to pasture ranged from 8.5 mgm(-2) to 18.5 mgm(-2), for the first 20 cm of the soil profile. Mercury loss was comparable to loss rates estimated for other Amazon sites and seems to be directly related to Hg concentrations present in soils.  相似文献   
17.
Metal pollution is a current environmental issue as a consequence of unregulated anthropic activiy. A wide range of bioremediation strategies have been successfully implemented to recover contaminated areas. Among them, bacterial bioremediation stands out as a promising tool to confront these types of concerns. This study aimed to compare and discuss worldwide scientific evolution of bacterial potential for metal bioremediation in aquatic ecosystems. The study consisted of a systematic review, elaborated through a conceptual hypothesis model, during the period from 2000 to 2016, using PubMed, MEDLINE, and SciELO databases as data resources. The countries with the largest number of reports included in this work were India and the USA. Industrial wastewater discharge was the main subject associated to metal contamination/pollution and where bacterial bioremediations have mostly been applied. Biosorption is the main bioremediation mechanism described. Bacterial adaptation to metal presence was discussed in all the selected studies, and chromium was the most researched bioremedied substrate. Gram-negative Pseudomonas aeruginosas and the Gram-positive Bacillus subtilis bacteria were microorganisms with the greatest applicability for metal bioremediation. Most reports involved the study of genes and/or proteins related to metal metabolism and/or resistence, and Chromobacterium violaceum was the most studied. The present work shows the relevance of metal bacterial bioremediation through the high number of studies aimed at understanding the microbiological mechanisms involved. Moreover, the developed processes applied in removal and/or reducing the resulting environmental metal contaminant/pollutant load have become a current and increasingly biotechnological issue for recovering impacted areas.  相似文献   
18.
The Northeastern semi-arid Brazilian region is experiencing rapid social and economic development based on improving water management and even in areas of low human occupation, anthropogenic emissions of N and P surpass natural emissions in at least one order of magnitude and these additional loads can alter the water quality of the receiving estuaries. This study estimates, using an emission factor approach, the annual emissions of N and P from natural processes and anthropogenic sources for estuaries along the Ceará State, NE Brazil. Emission factors from natural sources are one to two orders of magnitude lower than those for anthropogenic sources. Among the anthropogenic activities, the aquaculture is responsible for most N emission (0.52 t km−2 year−1) followed by waste water and husbandry. For P, the largest average emission factors are from husbandry (0.30 t km−2 year−1), waste water and agriculture.  相似文献   
19.
The knowledge of Hg concentrations in fish is of considerable interest since these organisms are a major source of protein to coastal human populations and fishing communities. The main source of human exposure to Hg contamination occurs through the consumption of fish. In this paper, we compare Hg concentration in 13 fish species from Jaguaribe River lower basin and an adjacent coastal region in the northeastern coast of Brazil. We sampled fish from three stretches of the river: fluvial, estuarine, and marine regions. We tested the hypothesis that Hg concentration in muscle tissue vary according to species, location, and trophic level. Significant differences were observed among species and trophic level, but these could not be observed among the regions studied. As expected, the highest concentrations were observed in carnivorous fish (5.6–107.5; 26.9?±?18.8 ng g?1). Hg concentrations observed in this study are similar to those observed in regions of low environmental contamination. We estimated Hg intake to vary between 0.02 and 0.22 ng Hg kg body weight?1 week?1, for the average body weight of 56.7 kg, which was considered as low exposure and therefore, a low risk to consumers of fish from the regions studied.  相似文献   
20.
The accumulation of Hg, Zn, and Cu was evaluated in mangrove sediments located between a large, 20-years-old landfill and waters of Guanabara Bay (southeast Brazil). The contamination history of the area provides substantial evidence that metal accumulation in the study site is influenced by past metal emissions from multiple sources (e.g. contaminated rivers and the landfill surrounding the site). At the southern part of the site, metal levels are up to 890 ng g(-1) Hg, 850 microg g(-1) Zn, and 58 microg g(-1) Cu. Enrichment factors and excess (background-deducted) concentration inventories show a high spatial variability of metal contamination and storage in the site, with differences often by a factor higher than two within a sampling station and higher than five between sampling stations. These contrasts are attributable to a coupling between spatial variability of anthropogenic metal input and metal behavior and retention within the sediments. Results indicate that during the last few decades mangrove sediments retained a substantial part of metal emissions to the site, probably reducing the metal transport to Guanabara Bay waters, and suggest the suitability of mangrove ecosystems as physical and biogeochemical barriers to metal contaminant transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号