首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1586篇
  免费   23篇
  国内免费   254篇
安全科学   69篇
废物处理   93篇
环保管理   121篇
综合类   401篇
基础理论   334篇
污染及防治   649篇
评价与监测   99篇
社会与环境   72篇
灾害及防治   25篇
  2023年   12篇
  2022年   67篇
  2021年   22篇
  2020年   27篇
  2019年   24篇
  2018年   88篇
  2017年   45篇
  2016年   67篇
  2015年   71篇
  2014年   74篇
  2013年   127篇
  2012年   77篇
  2011年   111篇
  2010年   82篇
  2009年   78篇
  2008年   91篇
  2007年   108篇
  2006年   85篇
  2005年   56篇
  2004年   87篇
  2003年   80篇
  2002年   44篇
  2001年   107篇
  2000年   52篇
  1999年   30篇
  1998年   21篇
  1997年   18篇
  1996年   20篇
  1995年   25篇
  1994年   17篇
  1993年   9篇
  1992年   8篇
  1991年   8篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
  1964年   1篇
  1960年   1篇
  1951年   1篇
排序方式: 共有1863条查询结果,搜索用时 406 毫秒
161.
The removal of the organic toxic chemicals di-n-butyl phthalate (DBP), di-2-ethyl hexyl phthalate (DEHP), nonylphenol (NP), and bisphenol-A (BPA) by laccase obtained from the spent mushroom compost (SMC) of the white rot fungi, Ganoderma lucidum, was investigated. The optimal conditions for the extraction of laccase from SMC required using sodium acetate buffer (pH 5.0, solid : solution ratio 1 : 5), and extraction over 3 h at 4 °C. The removal of NP was enhanced by adding CuSO(4) (1 mM), MnSO(4) (0.5 mM), tartaric acid (20 mM), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS; 1 mM), and 1-hydroxybenzotriazole (HBT; 20 mg L(-1)), with ABTS yielding a higher NP removal efficiency than the other additives. At a concentration of 2 mg L(-1), DBP, DEHP, NP, and BPA were almost entirely removed by laccase after incubation for 1 day. The removal efficiencies, in descending order of magnitude, were DBP > BPA > NP > DEHP. We believe that these findings could provide useful information for improving the efficiency of the removal of organic toxic chemicals in the environment.  相似文献   
162.
This article reports on soil samples collected from Hsiang-Shan wetland, Taiwan. Canonical discriminant analysis (CDA) was applied to identify an existing habitat type's scheme by identifying the physico-chemical properties of sediment in Hsiang-Shan wetland. The three constructed discriminant functions (CDFs) showed a marked contribution by most of the discriminant variables, and the recognition capacities in these three CDFs were 49.5, 32.8 and 17.7%. Our study revealed that the most important latent factors in Hsiang-Shan wetland are soil texture-caused factor, ocean current-caused factor, nutrient-caused factor, and the redox reaction-caused factor. And the most sensitivity parameters in this habitat followed the descending order: OBD, EC, Eh, sand, TN, porosity, STP, silt, VCP and pH. And the inhabited sediment properties for U. formosensis in terms of soil texture are sand, silt, and clay (34.05, 29.72, and 32.35%, respectively): that is clay loam soil. We also found that U. formosensis preferred to inhabit the upper intertidal zone, spending 8.41% of the time submerged. Vegetation coverage on the ground was less than 2.20%, showing that it preferred to live in a bare intertidal habitat. Concerning nest choosing, excavating burrows is more difficult when a high soil penetration force is required, and in this study the soil penetration force for 20 cm was found to be is 45.98 N/cm(2). The results will be helpful in developing a methodology for use by the government in refining its management programs.  相似文献   
163.
The objective of this study is to assess the risk of insufficient water supply posed by high-turbidity water. Several phenomena can pose risks to the sufficiency of a water supply; this study concerns risks to water treatment plants from particular properties of rainfall and raw water turbidity. High-turbidity water can impede water treatment plant operations; rainfall properties can influence the degree of soil erosion. Thus, water turbidity relates to rainfall characteristics. Exceedance probabilities are presented for different rainfall intensities and turbidities of water. When the turbidity of raw water is higher than 5,000 NTU, it can cause operational problems for a water treatment plant. Calculations show that the turbidity of raw water at the Ban-Sin water treatment plant will be higher than 5,000 NTU if the rainfall intensity is larger than 165 mm/day. The exceedance probability of high turbidity (turbidity >5,000 NTU) in the Ban-Sin water treatment plant is larger than 10%. When any water treatment plant cannot work regularly, its ability to supply water to its customers is at risk.  相似文献   
164.
Low impact development best management practices (LID-BMPs) are considered to be cost-effective measures for mitigating the water quantity and quality impact of urban runoff. Currently, there are many types of LID-BMPs, and each type has its own intrinsic technical and/or economical characteristics and limitations for implementation. The selection of the most appropriate BMP type(s) for a specific installation site is therefore a very important planning step. In the present study, a multi-criteria selection index system (MCIS) for LID-BMP planning was developed. The selection indexes include 12 first-level indices and 26 second-level indices which reflect the specific installation site characteristics pertaining to site suitability, runoff control performance, and economics of implementation. A mechanism for ranking the BMPs was devised. First, each individual second-level index was assigned a numeric value that was based on site characteristics and information on LID-BMPs. The quantified indices were normalized and then integrated to obtain the score for each of the first-level index. The final evaluation scores of each LID-BMP were then calculated based on the scores for the first-level indices. Finally, the appropriate BMP types for a specific installation site were determined according to the rank of the final evaluation scores. In order to facilitate the application of the MCIS BMP ranking system, the computational process has been coded into a software program, BMPSELEC. A case study demonstrating the MCIS methodology, using an LID-BMP implementation planning at a college campus in Foshan, Guangdong Province, is presented.  相似文献   
165.
Soil and sediment samples from several intertidal environment exposed to different types of contamination were studied to investigate the importance of grain size in relation to the capacity of the substrates to retain trace metals. The unfractionated samples (referred to as bulk samples) were separated into the following grain/size fractions: fine–coarse sand (2?0.100 mm), very fine sand (0.100?0.050 mm), silt (0.050?0.002 mm), and clay (0.002 mm). The sample into its fractions was carried out was in a glove box under high-purity N2 atmosphere in order to minimize any alterations to the samples. The bulk samples were characterized in terms of physicochemical properties such as pH, redox potential, and grain size. The total organic carbon (TOC), total sulfur (S), iron (Fe) pyrite, Fe, and manganese (Mn), and trace metals lead (Pb), mercury (Hg), chromium (Cr), and nickel (Ni) were analyzed in the bulk samples and in each fraction. The sand fractions were also examined by scanning electron microscopy (SEM). Comparisons of the above parameters were made between fractions and between each fraction and the corresponding bulk sample. The fine–coarse sand fraction contained high levels of the primary elements of the geochemical processes that occur in marine sedimentary environments such as TOC, total Fe, Mn, and S. The net concentrations of these four elements were higher in the fine-coarse sand fraction than in the very fine sand fraction and were similar to the net concentrations in the silt and clay fractions. Detailed SEM analysis of the sand coarse fraction revealed the presence of Fe and aluminum oxyhydroxide coatings in the oxic layers, whereas the framboidal pyrites and coatings observed in the anoxic layers were Fe sulfides. The presence of the various coatings explains why the trace metal concentrations in the sand fine–coarse fraction were similar to those in the clay fraction and higher than those in the very fine sand fraction. The present results highlight the importance of the sand fraction, which is generally disregarded in geochemical and environmental studies of sedimentary layers.  相似文献   
166.
167.
168.
Assessment of groundwater quality plays a significant role in the utilization of the scarce water resources globally and especially in arid regions. The increasing abstraction together with man-made contamination and seawater intrusion have strongly affected groundwater quality in the Arabia Peninsula, exemplified by the investigation given here from the United Arab Emirates, where the groundwater is seldom reviewed and assessed. In the aim of assessing current groundwater quality, we here present a comparison of chemical data linked to aquifers types. The results reveal that most of the investigated groundwater is not suitable for drinking, household, and agricultural purposes following the WHO permissible limits. Aquifer composition and climate have vital control on the water quality, with the carbonate aquifers contain the least potable water compared to the ophiolites and Quaternary clastics. Seawater intrusion along coastal regions has deteriorated the water quality and the phenomenon may become more intensive with future warming climate and rising sea level.  相似文献   
169.
The sensitivity of an integrated model to assess the potential for wind-borne spread of foot-and-mouth disease (FMD) to variations in key parameters controlling different physical and biological processes was evaluated. The estimated number of farms at risk is sensitive to the virus strain used and the accompanying effective contact rate. The C Noville strain increased the estimated number of exposed farms ranked as high and medium risk of being infected by a factor of 5, compared to the baseline, based on the O UKG 2001 strain. The inclusion of a model for biological ageing of the virus can also have a significant effect on the concentration patterns arising from transport and dispersion of the virus. Its inclusion has the practical advantage of markedly reducing the time required for the calculations. The estimated number of farms affected by exposure to high and medium virus concentrations is not grossly sensitive to attenuation caused by temperature or relative humidity effects. Changes in susceptibility to infection, as determined by the parameter θ in the exposure-risk model, does not change the configuration of the virus plumes, but it does change the distribution of farms at risk by risk category. These findings suggest that a good understanding of characteristics (excretion rates from infected animals, susceptibility of different species to infection, virus survival, etc.) of the virus strain involved in an FMD outbreak is necessary to provide a reliable assessment of the risk of wind-borne spread. In the event of an incursion of FMD, provision for laboratory studies on the virus will be an essential component of the disease response and should be factored into contingency plans.
X. YangEmail:
  相似文献   
170.
Freshwater clam Corbicula fluminea, a surrogate species in metal toxicity testing, is a promising bioindicator of impairment in aquatic ecosystems. Little is known, however, about the relationship between clam valve daily rhythmic response and metal bioavailability related to a metal biological early warning system (BEWS) design. The purpose of this study was to link biotic ligand model (BLM)-based bioavailability and valve daily rhythm in C. fluminea to design a biomonitoring system for online in situ detection of waterborne copper (Cu). We integrated the Hill-based dose-time-response function and the fitted daily rhythm function of valve closure into a constructed programmatic mechanism. The functional presentation of the present dynamic system was completely demonstrated by employing a LabVIEW graphic control program in a personal computer. We used site-specific effect concentration causing 10% of total valve closure response (EC10) as the detection threshold to implement the proposed C. fluminea-based Cu BEWS. Here our results show that the proposed C. fluminea-based BEWS could be deliberately synthesized to online in situ transmit rapidly the information on waterborne bioavailable Cu levels under various aquatic environmental conditions through monitoring the valve daily rhythmic changes. We suggested that the developed C. fluminea-based dynamic biomonitoring system could assist in developing technically defensible site-specific water quality criteria to promote more efficient uses in water resources for protection of species health in aquatic environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号