首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   0篇
安全科学   9篇
废物处理   1篇
综合类   34篇
基础理论   13篇
污染及防治   22篇
评价与监测   5篇
  2016年   1篇
  2012年   3篇
  2011年   17篇
  2010年   1篇
  2009年   9篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1988年   1篇
  1983年   1篇
  1981年   1篇
  1965年   1篇
  1964年   3篇
  1961年   1篇
  1956年   1篇
  1940年   1篇
  1933年   1篇
  1932年   2篇
  1931年   2篇
  1930年   1篇
  1929年   1篇
  1928年   2篇
排序方式: 共有84条查询结果,搜索用时 31 毫秒
31.
Climate change impacts on the hydrological cycle, e.g. leading to changes of precipitation patterns, have been observed over several decades. Higher water temperatures and changes in extremes hydrometeorological events (including floods and droughts) are likely to exacerbate different types of pressures on water resources with possible negative impacts on ecosystems and human health. In addition, sea-level rise is expected to extend areas of salinisation of groundwater and estuaries, resulting in a decrease of freshwater availability for humans and ecosystems in coastal areas. Furthermore, climate-related changes in water quantity and quality are expected to affect food availability, water access and utilisation, especially in arid and semi-arid areas, as well as the operation of water infrastructure (e.g. hydropower, flood defences, and irrigation systems). This paper serves as an introduction to the special issue of Environment Science & Policy dealing with climate change impacts on water-related disasters. It provides a brief background about relevant EU water policies and examples of EU-funded research trends which illustrate on-going efforts to improve understanding and modelling of climate changes related to the hydrological cycles at scales that are relevant to decision making (possibly linked to policy).  相似文献   
32.
Coastal areas are vital economic hubs in terms of settlement, industry, agriculture, trade and tourism to mention some key sectors. There are already many coastal problems including erosion, flood risk and long-term habitat deterioration. As economies continue to develop the asset base at risk will grow, while accelerating climate change will increase the likelihood of damaging extreme events, as well as accelerate habitat decline. Existing coastal management and defence approaches are not well tuned to these challenges as they assume a static situation.THESEUS project is developing a systematic approach to delivering both a low-risk coast for human use and healthy habitats for evolving coastal zones subject to multiple change factors. The project examines innovative mitigation and adaptation technologies and integrate the best of these technical measures in a strategic policy context through overarching guidelines. THESEUS activities are carried out within a multidisciplinary framework using 8 study sites across Europe, with specific attention to the most vulnerable coastal environments such as deltas, estuaries and wetlands, where many large cities and industrial areas are located.This paper describes THESEUS approach, and specifically: the Source-Pathway-Receptor-Consquence model for coastal risk assessment; the engineering, social, economic and ecological mitigation measures under analysis; the participatory approach with end users and coastal authorities for the selection and identification of the appropriate defence strategy to be planned in sudy sites.  相似文献   
33.
The FloodProBE project started as a FP7 research project in November 2009.Floods, together with wind related storms, are considered the major natural hazard in the EU in terms of risk to people and assets. In order to adapt urban areas (in river and coastal zones) to prevent flooding or to be better prepared for floods, decision makers need to determine how to upgrade flood defences and increasing flood resilience of protected buildings and critical infrastructure (power supplies, communications, water, transport, etc.) and assess the expected risk reduction from these measures.The aim of the FloodProBE-project is to improve knowledge on flood resilience and flood protection performance for balancing investments in flood risk management in urban areas. To this end, technologies, methods and tools for assessment purposes and for the adaptation of new and existing buildings and critical infrastructure are developed, tested and disseminated.Three priority areas are addressed by FloodProBE. These are: (i) vulnerability of critical infrastructure and high-density value assets including direct and indirect damage, (ii) the assessment and reliability of urban flood defences including the use of geophysical methods and remote sensing techniques and (iii) concepts and technologies for upgrading weak links in flood defences as well as construction technologies for flood proofing buildings and infrastructure networks to increase the flood resilience of the urban system.The primary impact of FloodProBE in advancing knowledge in these areas is an increase in the cost-effectiveness (i.e. performance) of new and existing flood protection structures and flood resilience measures.  相似文献   
34.
In the context of urban flood management, resilience is equal to resisting, recovering, reflecting and responding. The variety of causes of flooding and their consequences underpin the need for increased and internationally coordinated efforts to enhance technologies and policies for dealing with floods. This paper addresses this issue and presents some novel research ideas related to resilience to flooding in urban areas, which are under development within the EU FP7 project ‘Collaborative research on flood resilience in urban areas’ (CORFU). The approach adopted in this project aims to quantify the cost-effectiveness of resilience measures and integrative and adaptable flood management plans for different scenarios of relevant drivers: urban development, socio-economic trends and climate changes. It is believed that the way in which the different models are being put together, combined with the variability of conditions in case study areas in Asia and in Europe, will ultimately enable more scientifically sound policies for the management of the consequences of urban flooding.  相似文献   
35.
GOAL, SCOPE AND BACKGROUND: Lake Shkodra/Skadar is the largest lake in the Balkans region and located on the border between Albania to the south and Montenegro to the north. Because of the wide range of endemic, rare or endangered plant and animal species it supports, Lake Shkodra/Skadar and its extensive associated wetlands are internationally recognised as a site of significance and importance (Ramsar site). In recent years, social and economic changes in both Albania and Montenegro have lead to unprecedented levels of urban and industrial effluent entering the lake. Of particular concern is the increasing input of toxic hydrophobic organic pollutants (HOPs) into the lake and the degree to which these compounds are available for uptake by aquatic biota. Semipermeable membrane devices (SPMDs) have been shown to sample the readily bioavailable fraction (dissolved phase) of waterborne HOPs and in doing so provide relevant data for exposure assessment. The aim of the current study was to use SPMD-based sampling in conjunction with appropriate bioassays and chemical analysis to identify readily bioavailable HOPs in the lake. METHODS: SPMDs were constructed and deployed at three sites in the Albanian sector and three sites in the Montenegrin sector of Lake Skadar/Shkodra for 21 days. Following the dialytic recovery of target analytes and size exclusion chromatographic clean-up, aliquots of SPMD samples were subjected to GC-MS scan analysis for major components, GC-MS SIM analysis for 16 priority pollutant polycyclic aromatic hydrocarbons (PP-PAHs) and assayed for EROD-inducing, estrogenic and mutagenic potential using rainbow trout liver cells (RTL-W1), the yeast estrogen screen (YES) and the Ames Test, respectively. RESULTS AND DISCUSSION: A total of 39 compounds were tentatively identified in SPMD samples from the six sampling sites. Alkylated PAHs were the most abundant and ubiquitous compounds present along with various sterols and sterol derivatives. Numerous other compounds remain unidentified. 15 of the 16 targeted PP-PAHs were present in samples from one or more of the sampling sites indicating these compounds are both readily bioavailable and widely distributed in Lake Shkodra/Skadar. Total PP-PAH concentrations ranged between 3991 ng/SPMD and 10695 ng/SPMD. Bioassays carried out on SPMD samples revealed significant EROD-inducing and estrogenic potential at five of the six sampling sites indicating toxicologically relevant compounds are readily available for uptake by resident aquatic biota. EROD-inducing potential was positively correlated with targeted PP-PAH concentration (r2 = 0.74). However, comparison of bioassay- and analytically-derived toxicity equivalents revealed targeted PP-PAHs were responsible for less than 0.06% of the total EROD-inducing potential. CONCLUSIONS AND OUTLOOK: The combination of SPMD-based sampling with appropriate bioassays and chemical analysis provided an effective tool for the identification of environmentally relevant waterborne pollutants in Lake Shkodra/Skadar. Our results show that toxicologically relevant HOPs including EROD-inducing and potentially estrogenic compounds are widely distributed in the lake and readily available for uptake by aquatic biota. Our results also suggest that alkylated PAHs rather than parent compounds may be of greater toxicological relevance in the lake. As anthropogenic influences continue to increase, SPMD-based sampling is expected to play a central role in future research concerned with the identification, monitoring and assessment of the risk posed by HOPs to Lake Shkodra/Skadar's aquatic biota.  相似文献   
36.
Schwebstoffgebundene Schadstoffe werden durch Sedimentation der Wasserphase und damit der Verfügbarkeit für viele aquatischen Organismen entzogen. W?hrend bei durchschnittlichen hydrologischen. Verh?ltnissen die Freisetzung von Schadstoffen aus stabil gelagerten Sedimenten meist weitgehend unterbunden wird, besteht bei Hochwassereignissen die Gefahr einer Remobilisierung von kontaminierten Ablagerungen. In diesem Beitrag wird ein kombiniertes ?kotoxikologisches und hydraulisches Untersuchungssystem zur Untersuchung der ?kotoxikologischen Belastung und des Erosionsrisikos von Sedimenten vorgestellt. Der integrierte Ansatz wurde am staugeregelten Neckar angewendet, um das Sch?digungspotenzial und die Gefahr einer Remobilisierung an Sedimentbohrkernen der Stauhaltung Lauffen sowie an Schwebstoffen zweier extremer Hochwasser zu überprüfen. Für die Bohrkernsegmente unterhalb einer Erosionsdiskordanz konnte eine sprunghafte Zunahme der ?kotoxikologischen Belastung ermittelt werden. Bei Hochwasserereignissen mit einer 5-j?hrlichen Wiederkehrwahrscheinlichkeit (=HQ5) k?nnen prinzipiell alle Sedimente, auch die st?rker kontaminierten und erosionsresistenteren Altsedimente, remobilisiert werden. W?hrend der Hochwasserereignisse (HQ15 bis HQ20) kam es zu einer deutlichen Erh?hung des cytotoxischen und mutagenen Sch?digungspotenzials der Schwebstoffe im Vergleich zu einem mittleren Hochwasser im Jahre 1995/96 (HQ1) Dies schien zumindest teilweise auf die Remobilisierung hochkontaminierter Altsedimente zurückzuführen zu sein.  相似文献   
37.
38.
New in situ reactive barrier technologies were tested nearby a local aquifer in Bitterfeld, Saxonia-Anhalt, Germany, which is polluted mainly by chlorobenzene (CB), in concentrations up to 450 microM. A reactor filled with original aquifer sediment was designed for the microbiological remediation of the ground water by indigenous bacterial communities. Two remediation variants were examined: (a) the degradation of CB under anoxic conditions in the presence of nitrate; (b) the degradation of CB under mixed electron acceptor conditions (oxygen+nitrate) using hydrogen peroxide as the oxygen-releasing compound. Under anoxic conditions, no definite degradation of CB was observed. Adding hydrogen peroxide (2.94 mM) and nitrate (2 mM) led to the disappearance of CB (ca. 150 microM) in the lower part of the reactor, accompanied by a strong increase of the number of cultivable aerobic CB degrading bacteria in reactor water and sediment samples, indicating that CB was degraded mainly by productive bacterial metabolism. Several aerobic CB degrading bacteria, mostly belonging to the genera Pseudomonas and Rhodococcus, were isolated from reactor water and sediments. In laboratory experiments with reactor water, oxygen was rapidly released by hydrogen peroxide, whereas biotic-induced decomposition reactions of hydrogen peroxide were almost four times faster than abiotic-induced decomposition reactions. A clear chemical degradation of CB mediated by hydrogen peroxide was not observed. CB was also completely degraded in the reactor after reducing the hydrogen peroxide concentration to 880 microM. The CB degradation completely collapsed after reducing the hydrogen peroxide concentration to 440 microM. In the following, the hydrogen peroxide concentrations were increased again (to 880 microM, 2.94 mM, and 880 microM, respectively), but the oxygen demand for CB degradation was higher than observed before, indicating a shift in the bacterial population. During the whole experiment, nitrate was uniformly reduced during the flow path in the reactor.  相似文献   
39.
Particularly in microbiological laboratories and areas in intensive medical use, regular and thorough disinfection of surfaces is required in order to reduce the numbers of bacteria and to prevent bacterial transmission. The conventional methods of disinfection with wiping are not effective in the longer term, cannot be standardized, are time- and staff-intensive and use aggressive chemicals. Disinfection with hard ultraviolet C (UVC) light is usually not satisfactory, as the depth of penetration is inadequate and there are occupational medicine risks. Photocatalytic oxidation on surfaces coated with titanium dioxide (TiO2) might offer a possible alternative. In the presence of water and oxygen, highly reactive OH-radicals are generated by TiO2 and mild ultraviolet A (UVA). These radicals are able to destroy bacteria, and may therefore be effective in reducing bacterial contamination. Direct irradiation with UVC however can produce areas of shadow in which bacteria are not inactivated. Using targeted light guidance and a light-guiding sheet (out of a UVA-transmittant, Plexiglas, for example), as in the method described in the present study, bacterial inactivation over the entire area is possible. The effectiveness of the method was demonstrated using bacteria relevant to hygiene such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecium. For these bacteria, a reduction efficiency (RE) more than 6log10 steps in 60 min was observed. Using Candida albicans, a RE of 2log10 steps in 60 min was seen. Light and scanning electron microscopic examinations suggest that the germ destruction achieved takes place through direct damage to cell walls caused by OH-radicals.  相似文献   
40.
The grey top-shell, Gibbula cineraria is a common member of temperate to cold water kelp forest communities, but its longevity and the age structure of its populations remains unresolved. Combined measurements of shell growth rates (sclerochronology) and oxygen isotope composition allow analysis of rate and timing of shell growth. Eight specimens were analyzed from the southern North Sea (near Helgoland, German Bight). Three age groups were identified but external measurements (width, height, ornamentation patterns and number of whorls) and shell weight are not adequate for ontogenetic age discrimination. Stable oxygen isotope data is consistent with shell growth during the interval from April to December in isotopic equilibrium with seawater, and growth increments exhibit strong tidal controls with fortnightly bundles well preserved. Reliable environmental proxy data (water temperature) can be extracted from the shell aragonite using conventional stable oxygen isotope analyses, with a temporal resolution of days attainable during intervals of maximum growth, but annual extremes are not always recorded in the shell. While demonstrating the utility of G. cineraria as a environmental and potential paleoenvironmental proxy for kelp forest habitats, its longevity has been significantly overestimated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号