首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
环保管理   3篇
基础理论   1篇
污染及防治   5篇
评价与监测   3篇
  2021年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2009年   1篇
  2007年   2篇
  2005年   3篇
排序方式: 共有12条查询结果,搜索用时 0 毫秒
11.
Copolovici LO  Niinemets U 《Chemosphere》2005,61(10):1390-1400
To model the emission dynamics and changes in fractional composition of monoterpenoids from plant leaves, temperature dependencies of equilibrium coefficients must be known. Henry's law constants (H(pc), Pa m3 mol(-1) and octanol/water partition coefficients (K(OW), mol mol(-1)) were determined for 10 important plant monoterpenes at physiological temperature ranges (25-50 degrees C for H(pc) and 20-50 degrees C for K(OW)). A standard EPICS procedure was established to determine H(pc) and a shake flask method was used for the measurements of K(OW). The enthalpy of volatilization (deltaH(vol)) varied from 18.0 to 44.3 kJ mol(-1) among the monoterpenes, corresponding to a range of temperature-dependent increase in H(pc) between 1.3- and 1.8-fold per 10 degrees C rise in temperature. The enthalpy of water-octanol phase change varied from -11.0 to -23.8 kJ mol(-1), corresponding to a decrease of K(OW) between 1.15- and 1.32-fold per 10 degrees C increase in temperature. Correlations among physico-chemical characteristics of a wide range of monoterpenes were analyzed to seek the ways of derivation of H(pc) and K(OW) values from other monoterpene physico-chemical characteristics. H(pc) was strongly correlated with monoterpene saturated vapor pressure (P(v)), and for lipophilic monoterpenes, deltaH(vol) scaled positively with the enthalpy of vaporization that characterizes the temperature dependence of P(v) Thus, P(v) versus temperature relations may be employed to derive the temperature relations of H(pc) for these monoterpenes. These data collectively indicate that monoterpene differences in H(pc) and K(OW) temperature relations can importantly modify monoterpene emissions from and deposition on plant leaves.  相似文献   
12.
Foliar emission rates of plant-generated volatile monoterpenes depend on monoterpene partitioning between air, aqueous and lipid-phases in the leaves. While Henry's law constants (H pc, equilibrium gas/water partition coefficient) and octanol/water partition coefficients (K OW) for pure water have been previously used to simulate monoterpene emissions from the leaves, aqueous phase in plants is a complex solution of electrolytes and neutral osmotica. We studied the effects of dissociated compounds KCl and glycine and sugars glucose, sorbitol and sucrose with concentrations between 0 and 1M on H pc and K OW values for limonene and linalool. Linalool with ca. 1500-fold lower H(pc) (2.62 Pa m(3)mol(-1) for pure water at 30 degrees C) and ca. 30-fold lower K OW (955 mol mol(-1) for pure water at 25 degrees C) is the more hydrophilic compound of the two monoterpenes. H pc of both monoterpenes increased with increasing concentration of both ionic compounds and sorbitol, but decreased with increasing glucose and sucrose concentrations. The salting-out coefficients for H pc (kH) were ca. an order of magnitude larger for more hydrophilic compound linalool than for more hydrophobic limonene. For linalool, co-solutes modified H pc by 30-50% at the highest concentration (1M) tested. The effect of temperature on the salting-out coefficient of KCl was minor. As with H pc, K OW increased with increasing the concentration of KCl, glycine and sorbitol, and decreased with increasing glucose and sucrose concentrations. For limonene, co-solutes modified K OW by 20-50% at the highest concentration used. For linalool, the corresponding range was 10-35%. Salting-out coefficients for H pc and K OW were correlated, but the lipid-solubility was more strongly affected than aqueous solubility in the case of limonene. Overall, these data demonstrate physiologically important effects of co-solutes on H pc and K OW for hydrophilic monoterpenes and on K OW for hydrophobic monoterpenes that should be included in current emission models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号