首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
  国内免费   1篇
安全科学   2篇
废物处理   1篇
环保管理   4篇
综合类   6篇
基础理论   7篇
污染及防治   10篇
评价与监测   2篇
社会与环境   1篇
灾害及防治   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1988年   1篇
排序方式: 共有34条查询结果,搜索用时 125 毫秒
31.
In previous studies of stairway handrails, data were derived from static experiments which characterized the influence of the handrail design on ability to generate stabilizing force. This paper describes a novel and safe experimental approach developed to study the biomechanical efficacy of handrail use under dynamic conditions, wherein support-surface motion is used to perturb the balance of the subject who stands on a small (three step), heavily padded mock staircase. A primary objective of this initial study was to determine the influence of factors such as perturbation magnitude, stance leg (left or right), proximity to the handrail, initial hand position (on or off the rail), and ability to complete a step while grabbing the rail. The study was also intended to address a more basic issue: is it even possible to grab a handrail with sufficient speed and accuracy to prevent a fall after losing balance on a stairway? Testing of four healthy young adults demonstrated that sizeable stabilizing handrail force can be generated very quickly (up to 60% of body weight in less than 1 second) in response to loss of balance. Furthermore, these grabbing responses were clearly of functional significance, resulting in a marked reduction in the incidence of ‘falls’ (i.e. landing on the padded surface) compared to trials where the handrail was absent. The most consistent aspect of the force generation was the tendency to exert a forward axial force along the rail. An unexpected finding was that this force often appears to be exerted through a pulling, rather than pushing, action, because of the posterior location of the grip relative to the body. Although most of the force components tended to increase with perturbation magnitude, the lateral forces appeared to be most dependent on whether a step was taken. Stance leg had few effects, but variation in proximity to the rail was found to influence the angle at which the hand approached the rail. Gripping the rail prior to perturbation led to a greater tendency to pull upwards. Implications of these findings for safer handrail design are discussed.  相似文献   
32.
This paper provides a framework for evaluating the effects of population ageing on disaster resilience. In so doing, it focuses on the 1995 Kobe and 2004 Chuetsu earthquakes, two major disasters that affected Japan before the 2011 Great East Japan earthquake. It analyses regional population recovery on the basis of pre‐disaster and post‐recovery demographic characteristics using defined transition patterns of population ageing. The evaluation framework demonstrates that various recovery measures make different contributions to disaster resilience for each transition pattern of population ageing. With reference to regional population ageing, the framework allows for a prediction of disaster resilience, facilitating place vulnerability assessments and potentially informing policy‐making strategies for Japan and other countries with ageing populations.  相似文献   
33.

Problem

Falling is a leading cause of serious injury, loss of independence, and nursing-home admission in older adults. Impaired balance control is a major contributing factor.

Methods

Results from our balance-control studies have been applied in the development of new and improved interventions and assessment tools. Initiatives to facilitate knowledge-translation of this work include setting up a new network of balance clinics, a research-user network and a research-user advisory board.

Results

Our findings support the efficacy of the developed balance-training methods, balance-enhancing footwear, neuro-prosthesis, walker design, handrail-cueing system, and handrail-design recommendations in improving specific aspects of balance control.

Impact on Knowledge Users

A new balance-assessment tool has been implemented in the first new balance clinic, a new balance-enhancing insole is available through pharmacies and other commercial outlets, and handrail design recommendations have been incorporated into 10 Canadian and American building codes. Work in progress is expected to have further impact.  相似文献   
34.
Begum ZA  Rahman IM  Tate Y  Sawai H  Maki T  Hasegawa H 《Chemosphere》2012,87(10):1161-1170
Ex situ soil washing with synthetic extractants such as, aminopolycarboxylate chelants (APCs) is a viable treatment alternative for metal-contaminated site remediation. EDTA and its homologs are widely used among the APCs in the ex situ soil washing processes. These APCs are merely biodegradable and highly persistent in the aquatic environments leading to the post-use toxic effects. Therefore, an increasing interest is focused on the development and use of the eco-friendly APCs having better biodegradability and less environmental toxicity. The paper deals with the results from the lab-scale washing treatments of a real sample of metal-contaminated soil for the removal of the ecotoxic metal ions (Cd, Cu, Ni, Pb, and Zn) using five biodegradable APCs, namely [S,S]-ethylenediaminedisuccinic acid, imminodisuccinic acid, methylglycinediacetic acid, DL-2-(2-carboxymethyl) nitrilotriacetic acid (GLDA), and 3-hydroxy-2,2′-iminodisuccinic acid. The performance of those biodegradable APCs was evaluated for their interaction with the soil mineral constituents in terms of the solution pH and metal-chelant stability constants, and compared with that of EDTA. Speciation calculations were performed to identify the optimal conditions for the washing process in terms of the metal-chelant interactions as well as to understand the selectivity in the separation ability of the biodegradable chelants towards the metal ions. A linear relationship between the metal extraction capacity of the individual chelants towards each of the metal ions from the soil matrix and metal-chelant conditional stability constants for a solution pH greater than 6 was observed. Additional considerations were derived from the behavior of the major potentially interfering cations (Al, Ca, Fe, Mg, and Mn), and it was hypothesized that use of an excess of chelant may minimize the possible competition effects during the single-step washing treatments. Sequential extraction procedure was used to determine the metal distribution in the soil before and after the extractive decontamination using biodegradable APCs, and the capability of the APCs in removing the metal ions even from the theoretically immobilized fraction of the contaminated soil was observed. GLDA appeared to possess the greatest potential to decontaminate the soil through ex situ washing treatment compared to the other biodegradable chelants used in the study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号