首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   0篇
  国内免费   4篇
废物处理   5篇
环保管理   3篇
综合类   9篇
基础理论   26篇
污染及防治   43篇
评价与监测   16篇
社会与环境   9篇
灾害及防治   1篇
  2023年   7篇
  2022年   18篇
  2021年   10篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   11篇
  2016年   4篇
  2015年   7篇
  2014年   3篇
  2013年   11篇
  2012年   2篇
  2011年   7篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2004年   3篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1995年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
51.
Intrusion of synthetic textile dyes in the ecosystem has been recognized as a serious issue worldwide. The effluents generated from textiles contain large amount of recalcitrant unfixed dyes which are regarded as emerging contaminants in the field of waste water study. Removal of various toxic dyes often includes diverse and complex set of physico-chemical, biological and advanced oxidation processes adopted for treatment. Adsorption in itself is a well-known technique utilized for treatment of textile effluents using a variety of adsorbents. In addition, ozonation deals with effective removal of dyes using high oxidising power of ozone. The review summarizes dye removal study by a combination of ozonation and adsorption methods. Also, to acquire an effective interpretation of this combined approach of treating wastewater, a thorough study has been made which is deliberated here. Results assert that, with the combined ability of ozone and a catalyst/adsorbent, there is high possibility of total elimination of dyes from waste water. Several synthetically prepared materials have been used along with few natural materials during the combined treatment. However, considering practical applicability, some areas were identified during the study where work needs to be done for effective implementation of the combined treatment.
  相似文献   
52.
Wheat (Triticum aestivum L.) is grown as a rainfed crop in the sub-mountainous region of the Punjab state of India, with low crop and water productivity. The present study aims to assess the effect of climate change scenario (A1B) derived from PRECIS—a regional climate model—on wheat yield and water productivity. After minimizing bias in the model climate data for mid-century (2021–2050), evapotranspiration (ET) and yield of wheat crop were simulated using Decision Support System for Agrotechnology Transfer, version 4.5, model. In the changed climate, increased temperature would cause reduction in wheat yield to the extent of 4, 32 and 61 % in the mid-century periods between 2021–2030, 2031–2040 and 2041–2050, respectively, by increasing water stress and decreasing utilization efficiency of photosynthetically active radiation. The decreases in crop water productivity would be 40, 56 and 76 %, respectively, which are caused by decreased yield and increased ET. Planting of wheat up to November 25 till the years 2030–2031 seems to be helpful to mitigate the climate change effect, but not beyond that.  相似文献   
53.
An unmodified natural adsorbent, Xanthium Strumarium, was explored for its decoloration potential for treatment of textile effluents. Batch mode experimentation was carried out to optimize several process parameters with the well characterized adsorbent. For proper assessment of optimized pathway of adsorption, adsorption isotherms were implemented to the experimental data using nonlinear method. Apart from coefficients of determination, three error analysis methods standard error (S.E.), Chi-square (χ2) statistic and residual mean square error were additionally used to determine the best fitted isothermal model for the system. Freundlich model was creditably fitted to the adsorption data with minimum errors and high R 2 values. The adsorption capacity obtained was 14.7, 15.2 and 18.7 mg g?1 at 30, 40 and 50 °C, respectively. Overall adsorption process was endothermic with positive enthalpy and entropy values. Kinetic study revealed adsorption to be a two stage process initially controlled by film diffusion followed by pseudosecond order as the rate administering step during adsorption. About 95 % decoloration was achieved in 60 min. High decoloration tendency of the opted adsorbent proved that it is an effective and cheap adsorbent for treatment of coloured effluents providing a good alternative to activated carbon.  相似文献   
54.
Environmental Geochemistry and Health - A comprehensive radio-ecological evaluation of soil samples of Solan and Shimla districts of Himachal Pradesh has been carried out for risk and dose...  相似文献   
55.
Environmental Science and Pollution Research - Vasoactive intestinal peptide (VIP) is a neuropeptide that is produced by the lymphoid cells and plays a major role in immunological functions for...  相似文献   
56.
Environmental Science and Pollution Research - Developing therapies for neurodegenerative diseases are challenging because of the presence of blood–brain barrier and Alzheimer being one of...  相似文献   
57.
Highly hydrophobic Di 2-ethyl hexyl phthalate (DEHP) is one of the most prevalent plasticizers in wastewaters. Since its half-life in biological treatment is around 25 days, it can be used as an efficiency indicator of wastewater treatment plant for the removal of hydrophobic emerging contaminants. In this study, the performance of submerged membrane bioreactor was monitored to understand the effect of DEHP on the growth of aerobic microorganisms. The data showed that the chemical oxygen demand (COD) and ammonia concentration were detected below 10 and 1.0 mg/L, respectively for operating conditions of hydraulic retention time (HRT) = 4 and 6 hr, sludge retention time (SRT) = 140 day and sludge concentration between 11.5 and 15.8 g volatile solid (VS)/L. The removal efficiency of DEHP under these conditions was higher and ranged between 91% and 98%. Results also showed that the removal efficiency of DEHP in biological treatment depended on the concentration of sludge, as adsorption is the main mechanism of its removal. For the submerged membrane bioreactor, the pore size is the pivotal factor for DEHP removal, since it determines the amount of soluble microbial products coming out of the process. Highly assimilated microorganisms increase the biodegradation rate, as 74% of inlet DEHP was biodegraded; however, the concentration of DEHP inside sludge was beyond the discharge limit. Understanding the fate of DEHP in membrane bioreactor, which is one of the most promising and futuristic treatment process could provide replacement for conventional processes to satisfy the future stricter regulations on emerging contaminants.  相似文献   
58.
Distribution of radiotin (Sn113) in target organs and in the hepatic subcellular fractions was studied in sham and partially hepatectomised rats 72 hrs after the administration of tin (II) tartrate (2 mg Sn++, 10 uCi/100 gm body weight) intraperitoneally. The results indicate that in both the groups Sn113 was maximally accumulated in liver followed by kidney and spleen. Partially hepatectomised rat however accumulated less Sn113 in liver while an increase was observed in kidney. Subcellular studies showed significantly high affinity of tin for microsomes. A compartmental shift of radiotin from cytosol to microsomal fraction was observed in hepatectomised rats when compared to sham operated rats.  相似文献   
59.
Environmental Science and Pollution Research - The world has never been prepared for global pandemics like the COVID-19, currently posing an immense threat to the public and consistent pressure on...  相似文献   
60.
The treated water at the outlet oftreatment plants and representative servicereservoirs of Mumbai city have been evaluatedfor trihalomethane formation potential in1995–1996. Chloroform, dichlorobromomethane,chlorodibromomethane and bromoform have beenmonitored during monsoon, winter and summer.The levels of chloroform are found above theregulated WHO guideline value of 200 g L-1 in final water during postmonsoon atGhatkopar (226 g L-1), Malbar (210.3 g L-1) and Tulsi (231.26 g L-1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号