首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   750篇
  免费   17篇
  国内免费   10篇
安全科学   59篇
废物处理   20篇
环保管理   126篇
综合类   127篇
基础理论   192篇
环境理论   1篇
污染及防治   173篇
评价与监测   42篇
社会与环境   28篇
灾害及防治   9篇
  2023年   3篇
  2022年   7篇
  2021年   5篇
  2020年   9篇
  2019年   14篇
  2018年   16篇
  2017年   21篇
  2016年   39篇
  2015年   32篇
  2014年   27篇
  2013年   71篇
  2012年   34篇
  2011年   52篇
  2010年   35篇
  2009年   32篇
  2008年   47篇
  2007年   44篇
  2006年   35篇
  2005年   19篇
  2004年   28篇
  2003年   25篇
  2002年   11篇
  2001年   21篇
  2000年   14篇
  1999年   15篇
  1998年   8篇
  1997年   8篇
  1996年   6篇
  1995年   7篇
  1994年   6篇
  1993年   11篇
  1992年   6篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1984年   3篇
  1983年   10篇
  1982年   7篇
  1980年   3篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
  1971年   4篇
  1970年   3篇
  1968年   1篇
  1966年   2篇
  1963年   1篇
  1959年   1篇
排序方式: 共有777条查询结果,搜索用时 249 毫秒
621.
622.
ABSTRACT

Pollution prevention is a major economic and environmental issue in the chemical processing industries. This paper addresses the design of cost-effective recovery systems for vaporous emissions, systems that allow environmentally sound recycling of the recovered components for re-use within the process as a means of pollution prevention. A methodology is proposed to design optimal hybrid systems that involve gas permeation membranes and vapor condensation systems. The design methodology is presented as a mixed-integer, nonlinear program. Based on a fixed structure of the system, a short-cut formulation is derived. Additionally, the incorporation of the system into the emerging mass integration methodology is presented. It is demonstrated, through an industrial case study, that hybrid membrane/condensation systems possess advantages over either separation technique alone.  相似文献   
623.
Abstract

A simple data analysis method called the Tracer-Aerosol Gradient Interpretive Technique (TAGIT) is used to attribute particulate S and SO2 at Big Bend National Park in Texas and nearby areas to local and regional sources. Particulate S at Big Bend is of concern because of its effects on atmospheric visibility. The analysis used particulate S, SO2 , and perfluorocarbon tracer data from six 6-hr sampling sites in and near Big Bend National Park. The data were collected in support of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study; the field portion was conducted from July through October 1999. Perfluorocarbon tracer was released continuously from a tower at Eagle Pass, TX, approximately 25 km northeast of two large coal-fired power plants (Carbon I and II) in Coahuila, Mexico, and approximately 270 km east-southeast of Big Bend National Park.

The perfluorocarbon tracer did not properly represent the location of the emissions from the Carbon power plants for individual 6-hr sampling periods and attributed only 3% of the particulate S and 27% of the SO2 at the 6-hr sites in and near Big Bend to sources represented by the tracer. An alternative approach using SO2 to tag “local” sources such as the Carbon plants attributed 10% of the particulate S and 75% of the SO2 at the 6-hr sites to local sources. Based on these two approaches, most of the regional (65–86%) and a small fraction (19–31%) of the local SO2 was converted to particulate S. The analysis implies that substantial reductions in particulate S at Big Bend National Park cannot be achieved by only reducing emissions from the Carbon power plants; reduction of emissions from many sources over a regional area would be necessary.  相似文献   
624.
Abstract

Data from the U.S. Environmental Protection Agency Air Quality System, the Southeastern Aerosol Research and Characterization database, and the Assessment of Spatial Aerosol Composition in Atlanta database for 1999 through 2002 have been used to characterize error associated with instrument precision and spatial variability on the assessment of the temporal variation of ambient air pollution in Atlanta, GA. These data are being used in time series epidemiologic studies in which associations of acute respiratory and cardiovascular health outcomes and daily ambient air pollutant levels are assessed. Modified semivariograms are used to quantify the effects of instrument precision and spatial variability on the assessment of daily metrics of ambient gaseous pollutants (SO2, CO, NOx, and O3) and fine particulate matter ([PM2.5] PM2.5 mass, sulfate, nitrate, ammonium, elemental carbon [EC], and organic carbon [OC]). Variation because of instrument imprecision represented 7–40% of the temporal variation in the daily pollutant measures and was largest for the PM2.5 EC and OC. Spatial variability was greatest for primary pollutants (SO2, CO, NOx, and EC). Population–weighted variation in daily ambient air pollutant levels because of both instrument imprecision and spatial variability ranged from 20% of the temporal variation for O3 to 70% of the temporal variation for SO2 and EC. Wind rose plots, corrected for diurnal and seasonal pattern effects, are used to demonstrate the impacts of local sources on monitoring station data. The results presented are being used to quantify the impacts of instrument precision and spatial variability on the assessment of health effects of ambient air pollution in Atlanta and are relevant to the interpretation of results from time series health studies that use data from fixed monitors.  相似文献   
625.
Abstract

Objective: Though the mortality rate for motor vehicle collisions (MVCs) has been decreasing since the 1960s with the advent of the first federal seat belt laws in 1968, MVC remains a leading cause of death for individuals aged 1 to 44 years. The purpose of this study is to examine the effects of frontal (FABs) and side airbags (SABs) and electronic stability control (ESC) on the components of the MVC mortality rate.

Methods: The MVC mortality rate from 1994 to 2015 was separated into its components of exposure of vehicles, exposure of travel, collision density, injury incidence, and case fatality rate. Year was categorized on the availability of safety technology in vehicles: 1994–1997 (first-generation FABs mandated), 1998–2001 (sled-certified, second-generation FABs mandated), 2002–2006 (increasing prevalence of SABs and ESC), 2007–2011 (advanced airbags mandated), and 2012–2015 (ESC mandated, SAB in over 90% of vehicles, introduction of advanced safety systems). Relative contributions (RCs) of the components to changes in the MVC-related mortality rate were calculated as the absolute value of the component’s beta coefficient divided by the sum of the absolute values of all components’ beta coefficients. Negative binomial regression–estimated rate ratios (RRs) for the changes in the rate of each component by year category compared to the prior year category.

Results: Significant decreases in the MVC mortality rate were observed for 2007–2011 and 2012–2015. The decrease in 2007–2011 was due in most part to an 18% decrease in the injury incidence (RR?=?0.82, P?<?.0001, RC?=?63%), though there was a noted contribution by the decrease in vehicle miles traveled (RR?=?0.95, P?<?.0001, RC?=?15%). The continued decrease in mortality in 2012–2015 was due is most part to the 10% decreased case fatality rate (RR?=?0.90, P?<?.0001, RC?=?66%) because there was no significant change in the vehicle miles traveled and injury incidence.

Conclusions: The results of this study highlight the effects of vehicle safety technologies on the MVC-related mortality rate and can help direct prevention efforts. Through the study period, there was no meaningful contribution to decreases in the MVC-related mortality rate due to components related to exposure (i.e., vehicles per population and the rate of vehicle miles traveled), suggesting that prevention efforts at decreasing exposure prevalence would have little effect on the MVC-related mortality rate. Instead, prevention efforts should continue to focus on event-phase methods to decrease injury occurrence and mitigate injury severity during the collision.  相似文献   
626.
The pollutant tropospheric ozone causes human health problems, and environmental degradation and acts as a potent greenhouse gas. Using long-term hourly observations at five US air quality monitoring surface stations we studied the seasonal and diel cycles of ozone concentrations and surface air temperature to examine the temporal evolution over the past two decades. Such an approach allows visualizing the impact of natural and anthropogenic processes on ozone; nocturnal inversion development, photochemistry, and stratospheric intrusion. Analysis of the result provides an option for determining the duration for a regulatory ozone season. The application of the method provides independent confirmation of observed changes and trends in the ozone and temperature data records as reported elsewhere. The results provide further evidence supporting the assertion that ozone reductions can be attributed to emission reductions as opposed to weather variation. Despite a (~0.5 °C decade?1) daytime warming trend, ozone decreased by up to 6 ppb decade?1 during times of maximum temperature in the most polluted locations. Ozone also decreased across the emission reduction threshold of 2002 by 6–10 ppb indicating that emission reductions have been effective where and when it is most needed. Longer time series, and coupling with other data sources, may allow for the direct investigation of climate change influence on regional ozone air pollution formation and destruction over annual and daily time scales.  相似文献   
627.
Potential exposures from ground-level pyrotechnics were assessed by air monitoring and developing emission factors. Total particulate matter, copper and SO2 exposures exceeded occupational health guidelines at two outdoor performances using consumer pyrotechnics. Al, Ba, B, Bi, Mg, Sr, Zn, and aldehyde levels were elevated, but did not pose a health hazard based on occupational standards. Emission factors for total particulate matter, metals, inorganic ions, aldehydes, and polyaromatic hydrocarbons (PAHs) were determined for seven ground-supported pyrotechnics through air sampling in an airtight room after combustion. Particle generation ranged from 5 to 13% of the combusted mass. Emission factors (g Kg?1) for metals common to pyrotechnics were also high: K, 23–45; Mg, 1–7; Cu, 0.05–7; and Ba, 0.03–6. Pb emission rates of 1.6 and 2.7% of the combusted mass for two devices were noteworthy. A high correlation (r2 ≥ 0.89) between metal concentrations in pyrotechnic compositions and emission factors were noted for Pb, Cr, Mg, Sb, and Bi, whereas low correlations (r2 ≤ 0.1) were observed for Ba, Sr, Fe, and Zn. This may be due to the inherent heterogeneity of multi-effect pyrotechnics. The generation of inorganic nitrogen in both the particulate (NO2?, NO3?) and gaseous (NO, NO2) forms varied widely (<0.1–1000 mg Kg?1). Aldehyde emission factors varied by two orders of magnitude even though the carbon source was carbohydrates and charcoal for all devices: formaldehyde (<7.0–82 mg Kg?1), acetaldehyde (43–210 mg Kg?1), and acrolein (1.9–12 mg Kg?1). Formation of lower molecular weight PAHs such as naphthalene and acenaphthylene were favored, with their emission factors being comparable to that from the combustion of household refuse and agricultural debris. Ba, Sr, Cu, and Pb had emission factors that could produce exposures exceeding occupational exposure guidelines. Sb and unalloyed Mg, which are banned from consumer fireworks in the US, were present in significant amounts.  相似文献   
628.
Climate change is forecast to adversely affect air quality through perturbations in meteorological conditions, photochemical reactions, and precursor emissions. To protect the environment and human health from air pollution, there is an increasing recognition of the necessity of developing effective air quality management strategies under the impacts of climate change. This paper presents a framework for developing risk-based air quality management strategies that can help policy makers improve their decision-making processes in response to current and future climate change about 30-50 years from now. Development of air quality management strategies under the impacts of climate change is fundamentally a risk assessment and risk management process involving four steps: (1) assessment of the impacts of climate change and associated uncertainties; (2) determination of air quality targets; (3) selections of potential air quality management options; and (4) identification of preferred air quality management strategies that minimize control costs, maximize benefits, or limit the adverse effects of climate change on air quality when considering the scarcity of resources. The main challenge relates to the level of uncertainties associated with climate change forecasts and advancements in future control measures, since they will significantly affect the risk assessment results and development of effective air quality management plans. The concept presented in this paper can help decision makers make appropriate responses to climate change, since it provides an integrated approach for climate risk assessment and management when developing air quality management strategies. Implications: Development of climate-responsive air quality management strategies is fundamentally a risk assessment and risk management process. The risk assessment process includes quantification of climate change impacts on air quality and associated uncertainties. Risk management for air quality under the impacts of climate change includes determination of air quality targets, selections of potential management options, and identification of effective air quality management strategies through decision-making models. The risk-based decision-making framework can also be applied to develop climate-responsive management strategies for the other environmental dimensions and assess costs and benefits of future environmental management policies.  相似文献   
629.
While terrestrial moss and other plants are frequently used for environmental mapping and monitoring projects, data on the regional geochemistry of humus are scarce. Humus, however, has a much larger life span than any plant material. It can be seen as the “environmental memory” of an area for at least the last 60-100 years. Here concentrations of 39 elements determined by ICP-MS and ICP AES, pH and ash content are presented for 259 samples of forest floor humus collected at an average sample density of 1 site/300 km2 in the Czech Republic. The scale of anomalies linked to known contamination sources (e.g., lignite mining and burning, metallurgical industry, coal fired power plants, metal smelters) is documented and discussed versus natural processes influencing humus quality. Most maps indicate a local impact from individual contamination sources: often more detailed sampling than used here would be needed to differentiate between likely sources.  相似文献   
630.
Feather keratin has been widely studied for use as a bio-based material. In this paper, we dissolve feather keratin using industrial sodium sulfide to investigate the yield, dissolved keratin characteristics, and properties of regenerated products to assess the potential of using sodium sulfide as a means of converting waste feathers into a bio-polymer. Optimal conditions appeared to require short incubation times in order to give maximum strength in the regenerated product. This limits the yield to approximately 55%. Air-dried films and acid-precipitated samples are all readily re-crosslinked, suggesting the re-crosslinking process is robust. Minimizing exposure to the highly alkaline conditions appears favorable to final product strength through minimizing alkaline chain damage. The β-sheet structure of the parent keratin is largely maintained. The regenerated keratin was shown to have potentially attractive physical properties for use as a bio-polymer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号