首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   441篇
  免费   2篇
  国内免费   2篇
安全科学   13篇
废物处理   37篇
环保管理   33篇
综合类   37篇
基础理论   78篇
污染及防治   126篇
评价与监测   103篇
社会与环境   14篇
灾害及防治   4篇
  2023年   11篇
  2022年   22篇
  2021年   15篇
  2020年   6篇
  2019年   9篇
  2018年   12篇
  2017年   18篇
  2016年   18篇
  2015年   13篇
  2014年   39篇
  2013年   62篇
  2012年   19篇
  2011年   19篇
  2010年   23篇
  2009年   20篇
  2008年   24篇
  2007年   17篇
  2006年   21篇
  2005年   14篇
  2004年   7篇
  2003年   14篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   8篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1990年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1960年   1篇
  1943年   1篇
  1942年   1篇
  1937年   1篇
  1936年   1篇
排序方式: 共有445条查询结果,搜索用时 46 毫秒
211.
212.
This article reviews both the pollution by the electrochemical industry and the use of electrochemistry to clean water. Main pollutants include Pd, Cd, Ni, Hg and other metals and cyanide as well as organic pollutants. The cause for water pollution by electrochemistry is due to the effluents from different electrochemical industries such as mercury from chlor-alkali industry; lead, cadmium and mercury from battery industry; heavy metals and organic contaminants from electroplating wastes; contaminants from corrosion processes; and persistent organic pollutants from the synthesis and use of pesticides, dyes and pharmaceuticals. Most pollutants can be successfully eliminated or converted to non-toxic materials by methods based on the electrochemical principles. Electrochemical depolluting methods are mainly electrodialysis, electrocoagulation, electroflotation, anodic processes, cathodic processes and electrochemical advanced oxidation processes.  相似文献   
213.
214.
Tree bole volumes of 89 Scots pine (Pinus sylvestris L.), 96 Brutian pine (Pinus brutia Ten.), 107 Cilicica fir (Abies cilicica Carr.) and 67 Cedar of Lebanon (Cedrus libani A. Rich.) trees were estimated using Artificial Neural Network (ANN) models. Neural networks offer a number of advantages including the ability to implicitly detect complex nonlinear relationships between input and output variables, which is very helpful in tree volume modeling. Two different neural network architectures were used and produced the Back propagation (BPANN) and the Cascade Correlation (CCANN) Artificial Neural Network models. In addition, tree bole volume estimates were compared to other established tree bole volume estimation techniques including the centroid method, taper equations, and existing standard volume tables. An overview of the features of ANNs and traditional methods is presented and the advantages and limitations of each one of them are discussed. For validation purposes, actual volumes were determined by aggregating the volumes of measured short sections (average 1 meter) of the tree bole using Smalian's formula. The results reported in this research suggest that the selected cascade correlation artificial neural network (CCANN) models are reliable for estimating the tree bole volume of the four examined tree species since they gave unbiased results and were superior to almost all methods in terms of error (%) expressed as the mean of the percentage errors.  相似文献   
215.
216.
Environmental Chemistry Letters - Textile effluents containing synthetic dyes are one of the most important sources of water pollution. Several dyes are toxic to the aquatic life and...  相似文献   
217.
Abstract: Species occurrence in a habitat patch depends on local habitat and the amount of that habitat in the wider landscape. We used predictions from empirical landscape studies to set quantitative conservation criteria and targets in a multispecies and multiscale conservation planning effort. We used regression analyses to compare species richness and occurrence of five red‐listed lichens on 50 ancient oaks (Quercus robur; 120–140 cm in diameter) with the density of ancient oaks in circles of varying radius from each individual oak. Species richness and the occurrence of three of the five species were best explained by increasing density of oaks within 0.5 km; one species was best explained by the density of oaks within 2 km, and another was best predicted by the density of oaks within 5 km. The minimum numbers of ancient oaks required for “successful conservation” was defined as the number of oaks required to obtain a predicted local occurrence of 50% for all species included or a predicted local occurrence of 80% for all species included. These numbers of oaks were calculated for two relevant landscape scales (1 km2 and 13 km2) that corresponded to various species responses, in such a way that calculations also accounted for local number of oaks. Ten and seven of the 50 ancient oaks surveyed were situated in landscapes that already fulfilled criteria for successful conservation when the 50% and 80% criteria, respectively, were used to define the level of successful conservation. For cost‐efficient conservation, oak stands in the landscapes most suitable for successful conservation should be prioritized for conservation and management (e.g., grazing and planting of new oaks) at the expense of oak stands situated elsewhere.  相似文献   
218.
A 2D physical model of the human head was used to investigate how the irregular skull base structure affects brain kinematics during sagittal plane head dynamics. The model consisted of a rigid skull vessel with interchangeable skull base structures. One version of the model used a skull base mimicking the irregular geometry of the human. A second version used a skull base structure approximating the anterior and middle fossae as a flat surface. Silicone gel simulated the brain and was separated from the vessel by a paraffin layer which provided a slip condition at the interface between the gel and vessel. The model was exposed to 7600 rad/s2 peak rotational acceleration with 6 ms pulse duration and 5° forced rotation. After 90° free rotation, the model was decelerated during 30 ms. Five repeated tests were conducted with each version. Rigid body displacement, shear strain and principal strains were determined from high-speed video recorded trajectories of grid markers located at different positions in the surrogate brain. The humanlike skull base reduced peak displacements of the inferior surfaces of the temporal and frontal lobes up to 87% and 48%, respectively. Up to 48% and 36% higher peak strains were obtained in the frontal and superior regions of the surrogate brain in the version containing the humanlike skull base. In contrast, the humanlike skull base decreased peak strain up to 28% in the central region of the surrogate brain. The results indicate that the irregular skull base offers natural protection of nerves and vessels passing through fissures and foramina in the cranial floor but also that it affects kinematics in different regions throughout the cerebrum. Implications of these results are discussed with respect to brain injury and modeling of head impact.  相似文献   
219.
Environmental Science and Pollution Research - In this study, pollens were collected from 25 different locations of Northern Turkey to investigate pollution monitoring. Surface chemistry of pollen...  相似文献   
220.
The objective of this investigation was to examine the heavy metal status of the lower basin of Kainji dam (used for hydroelectricity generation), which includes Lakes Kainji/Jebba, Nigeria, and the potential for human exposure to heavy metals from eating fish caught in the lakes. Water, sediments and fish were sampled from the lakes and evaluated for As, Cu, Co, Cr, Fe, Hg, Mn, Ni, Pb, Sb, Ti, V and Zn using the EDXRF technique. Fe and Mn were found to be present at high mean concentrations in the water (13 and 9 μg L-1), sediment (7092 and 376 μg g-1) and fish (11.4 and 4.6 μg g-1) samples. Sb (3.2 μg L-1), Ti (4.1 μg L-1), Cr (2.2 μg L-1), Co (1.2 μg L-1), Cu (1.3 μg L-1) and Pb (1.2 μg L-1) in the water samples and Sb (29 μg g-1), Ti (27 μg g-1), V (27 μg g-1), Cr (27 μg g-1), Co (40 μg g-1), Ni (33 μg g-1), Cu (25 μg g-1), Zn (59 μg g-1) and Pb (19 μg g-1) in the sediment samples were found to be of medium mean concentrations. The other metals were present at trace levels (<1 μg), including As and Hg in the fish and sediment samples. There was an appreciable increase in␣metal concentrations in going from the water to the sediment samples. The probable source of the pollutants is anthropogenic, arising from agricultural activities, corrosion/abrasion of the ferrous steel material and additives in the lubricants and insulation used for auxiliary services on the turbine floor of the dam constructed on the lakes. However, natural geological sourcing from the underlying lake rock cannot be totally ignored, particularly the high levels of Fe and Mn in the sediment samples. The potential risk for human exposure to these metals emanates from the fish caught in the lakes and subsequently consumed, as there are already significant levels of these metals in the two fish species analysed, Tilapia (Oreochromis niloticus) and Chrysicthys (Chrysicthys auratus).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号