首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17121篇
  免费   164篇
  国内免费   128篇
安全科学   407篇
废物处理   720篇
环保管理   1885篇
综合类   3115篇
基础理论   4582篇
环境理论   11篇
污染及防治   4452篇
评价与监测   1129篇
社会与环境   1019篇
灾害及防治   93篇
  2022年   131篇
  2021年   119篇
  2020年   109篇
  2019年   120篇
  2018年   224篇
  2017年   267篇
  2016年   357篇
  2015年   294篇
  2014年   494篇
  2013年   1280篇
  2012年   524篇
  2011年   756篇
  2010年   656篇
  2009年   630篇
  2008年   742篇
  2007年   782篇
  2006年   640篇
  2005年   564篇
  2004年   554篇
  2003年   544篇
  2002年   525篇
  2001年   690篇
  2000年   502篇
  1999年   278篇
  1998年   190篇
  1997年   220篇
  1996年   220篇
  1995年   252篇
  1994年   262篇
  1993年   190篇
  1992年   206篇
  1991年   198篇
  1990年   211篇
  1989年   197篇
  1988年   156篇
  1987年   169篇
  1986年   164篇
  1985年   164篇
  1984年   162篇
  1983年   148篇
  1982年   136篇
  1981年   135篇
  1980年   124篇
  1979年   132篇
  1978年   106篇
  1977年   118篇
  1975年   97篇
  1974年   98篇
  1973年   104篇
  1972年   94篇
排序方式: 共有10000条查询结果,搜索用时 671 毫秒
451.
A field ammonia (NH3) release experiment and open top chambers containing moorland monoliths continuously fumigated with NH3 or sprayed with NH4Cl were used to assess the potential for using δ15N values in determining the area of influence around a point NH3 emission source. δ15N values are being increasingly used as environmental tracers and we tested the hypothesis that the δ15N signal from an NH3 emission source is observable in nearby vegetation. Using modified monitoring devices, atmospheric NH3 concentrations were found to decrease with distance from source, with δ15N values also reflecting this trend, producing a signal shift with changing concentration. Open top chamber studies of δ15N values of Calluna vulgaris (L.) Hull indicated a correlation with deposition treatments in current year shoots. Analysis of Calluna shoots from the NH3 release showed a similar trend of δ15N enrichment. Significant linear correlations between δ15N and percent N in plant material were found, both in the controlled conditions of the open top chambers and at the NH3 release site, illustrating the possible use of this technique in N deposition biomonitoring.  相似文献   
452.
Summary This study focuses on discrimination of changes, produced by low-level microwave exposure in intensity and time variability of the human EEG at rest. The power spectral density (PSD) method and nonlinear scaling analysis of the length distribution of low variability periods (LDLVP) were selected for analysis of the EEG signal. During the study, 19 healthy volunteers were exposed to a microwave (450 MHz) of 217 Hz frequency on-off modulation. The field power density at the scalp was 0.16 mW/cm2. The experimental protocol consisted of ten cycles of repetitive microwave exposure. Signals from frontal, temporal, parietal and occipital EEG channels on EEG theta, alpha and beta rhythms were analysed. Exposure to microwave causes average increase of EEG activity. LDLVP analysis discriminated significant effect in time variability for 2 subjects (11%). PSD method detected significant changes in intensity for 4 subjects (21%). The effect of low-level microwave exposure is stronger on EEG beta rhythm in temporal and parietal regions of the human brain.  相似文献   
453.
454.
455.
The ground water denitrification capacity of riparian zones in deep soils, where substantial ground water can flow through low-gradient stratified sediments, may affect watershed nitrogen export. We hypothesized that the vertical pattern of ground water denitrification in riparian hydric soils varies with geomorphic setting and follows expected subsurface carbon distribution (i.e., abrupt decline with depth in glacial outwash vs. negligible decline with depth in alluvium). We measured in situ ground water denitrification rates at three depths (65, 150, and 300 cm) within hydric soils at four riparian sites (two per setting) using a 15N-enriched nitrate "push-pull" method. No significant difference was found in the pattern and magnitude of denitrification when grouping sites by setting. At three sites there was no significant difference in denitrification among depths. Correlations of site characteristics with denitrification varied with depth. At 65 cm, ground water denitrification correlated with variables associated with the surface ecosystem (temperature, dissolved organic carbon). At deeper depths, rates were significantly higher closer to the stream where the subsoil often contains organically enriched deposits that indicate fluvial geomorphic processes. Mean rates ranged from 30 to 120 microg N kg(-1) d(-1) within 10 m versus <1 to 40 microg N kg(-1) d(-1) at >30 m from the stream. High denitrification rates observed in hydric soils, down to 3 m within 10 m of the stream in both alluvial and glacial outwash settings, argue for the importance of both settings in evaluating the significance of riparian wetlands in catchment-scale N dynamics.  相似文献   
456.
Minimizing the risk of nitrate contamination along the waterways of the U.S. Great Plains is essential to continued irrigated corn production and quality water supplies. The objectives of this study were to quantify nitrate (NO(3)) leaching for irrigated sandy soils (Pratt loamy fine sand [sandy, mixed, mesic Lamellic Haplustalfs]) and to evaluate the effects of N fertilizer and irrigation management strategies on NO(3) leaching in irrigated corn. Two irrigation schedules (1.0x and 1.25x optimum) were combined with six N fertilizer treatments broadcast as NH(4)NO(3) (kg N ha(-1)): 300 and 250 applied pre-plant; 250 applied pre-plant and sidedress; 185 applied pre-plant and sidedress; 125 applied pre-plant and sidedress; and 0. Porous-cup tensiometers and solution samplers were installed in each of the four highest N treatments. Soil solution samples were collected during the 2001 and 2002 growing seasons. Maximum corn grain yield was achieved with 125 or 185 kg N ha(-1), regardless of the irrigation schedule (IS). The 1.25x IS exacerbated the amount of NO(3) leached below the 152-cm depth in the preplant N treatments, with a mean of 146 kg N ha(-1) for the 250 and 300 kg N preplant applications compared with 12 kg N ha(-1) for the same N treatments and 1.0x IS. With 185 kg N ha(-1), the 1.25x IS treatment resulted in 74 kg N ha(-1) leached compared with 10 kg N ha(-1) for the 1.0x IS. Appropriate irrigation scheduling and N fertilizer rates are essential to improving N management practices on these sandy soils.  相似文献   
457.
458.
459.
Recycled waste wood is being increasingly used for energy production; however, organic and metal contaminants in by-products produced from the combustion/pyrolysis residue may pose a significant environmental risk if they are disposed of to land. Here we conducted a study to evaluate if highly polluted biochar (from pyrolysis) and ash (from incineration) derived from Cu-based preservative-treated wood led to different metal (e.g., Cu, As, Ni, Cd, Pb, and Zn) bioavailability and accumulation in sunflower (Helianthus annuus L.). In a pot experiment, biochar at a common rate of 2 % w/w, corresponding to ~50 t ha?1, and an equivalent pre-combustion dose of wood ash (0.2 % w/w) were added to a Eutric Cambisol (pH 6.02) and a Haplic Podzol (pH 4.95), respectively. Both amendments initially raised soil pH, although this effect was relatively short-term, with pH returning close to the unamended control within about 7 weeks. The addition of both amendments resulted in an exceedance of soil Cu statutory limit, together with a significant increase of Cu and plant nutrient (e.g., K) bioavailability. The metal-sorbing capacity of the biochar, and the temporary increase in soil pH caused by adding the ash and biochar were insufficient to offset the amount of free metal released into solution. Sunflower plants were negatively affected by the addition of metal-treated wood-derived biochar and led to elevated concentration of metals in plant tissue, and reduced above- and below-ground biomass, while sunflower did not grow at all in the Haplic Podzol. Biochar and ash derived from wood treated with Cu-based preservatives can lead to extremely high Cu concentrations in soil and negatively affect plant growth. Identifying sources of contaminated wood in waste stream feedstocks is crucial before large-scale application of biochar or wood ash to soil is considered.  相似文献   
460.
Environmental Science and Pollution Research - The poor adsorption capacity of sandy soils is one of the primary reasons of a high level of phosphorus (P) leaching. Silicon (Si)-rich soil...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号