首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20335篇
  免费   181篇
  国内免费   201篇
安全科学   534篇
废物处理   986篇
环保管理   2418篇
综合类   2667篇
基础理论   5284篇
环境理论   4篇
污染及防治   5598篇
评价与监测   1651篇
社会与环境   1453篇
灾害及防治   122篇
  2023年   92篇
  2022年   215篇
  2021年   217篇
  2020年   139篇
  2019年   177篇
  2018年   326篇
  2017年   320篇
  2016年   524篇
  2015年   363篇
  2014年   573篇
  2013年   1744篇
  2012年   672篇
  2011年   860篇
  2010年   802篇
  2009年   785篇
  2008年   886篇
  2007年   976篇
  2006年   870篇
  2005年   716篇
  2004年   723篇
  2003年   704篇
  2002年   670篇
  2001年   911篇
  2000年   631篇
  1999年   393篇
  1998年   274篇
  1997年   246篇
  1996年   291篇
  1995年   270篇
  1994年   250篇
  1993年   233篇
  1992年   240篇
  1991年   208篇
  1990年   214篇
  1989年   219篇
  1988年   197篇
  1987年   158篇
  1986年   126篇
  1985年   138篇
  1984年   169篇
  1983年   153篇
  1982年   193篇
  1981年   134篇
  1980年   119篇
  1979年   152篇
  1978年   118篇
  1977年   107篇
  1976年   100篇
  1975年   83篇
  1974年   88篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
921.
A pot trial was carried out to investigate the adverse effects of tetracycline (TC) on soil microbial communities, microbial activities, and the growth of ryegrass (Lolium perenne L). The results showed that the presence of TC significantly disturbed the structure of microbial communities and inhibited soil microbial activities in terms of urease, acid phosphatase and dehydrogenase (p < 0.05). Plant biomass was adversely influenced by TC, especially the roots with a reduction of 40% when compared with the control. Furthermore, TC decreased the assimilation of phosphorus by the plant although the concentration of phosphorus was increased by 20% due to decreased plant biomass. TC seemed to increase the concentration of dissolved organic carbon (by 20%) in soil. The findings implied that the agricultural use of animal manure or fishpond sediment containing considerable amounts of antibiotics may give rise to ecological risks.  相似文献   
922.
923.
Temperature and stable species concentration data are presented from various locations within a full-scale rotary kiln incinerator firing natural gas/carbon tetrachloride/air. The data are being collected as part of a cooperative program involving university, industry and government participation. The overall goal of the program is to develop a more sophisticated understanding of and a predictive capability for rotary kiln and afterburner performance as influenced by basic design and operational parameters. Non-uniformities in stable species and temperature exist for this particular kiln, at the kiln exit, under certain operating conditions. Flow perturbations from within the kiln were found to persist into the afterburner, but not into the stack. High destruction and removal efficiencies (DRE’s) were achieved under the operating conditions of these tests through adequate secondary combustion processing.  相似文献   
924.
Detailed temperature and stable species concentration data are presented from the kiln exit, transition section and afterburner of a full-scale incinerator facility firing natural gas/carbon tetrachloride/air. The data are collected as part of a cooperative program involving university, industry and government participation. The overall goal of the program is to develop an understanding and predictive capability for rotary kiln and afterburner performance as influenced by basic design and operational parameters. The data demonstrate that nonuniformities in stable species and temperature exist, under certain operating conditions, at the kiln exit in the vertical direction only. Measurements from the transition section indicate that non-uniformities may exist within this region under certain operating conditions. Flow perturbations from within the kiln can persist into the afterburner, although the degree of nonuniformity is substantially reduced compared to either the kiln or transition sections. High destruction and removal efficiencies were achieved under all operating conditions of these tests through a combination of kiln and secondary combustion processing.  相似文献   
925.
ABSTRACT

Recent awareness of suspected adverse health effects from ambient particulate matter (PM) emission has prompted publication of new standards for fine PM with aerodynamic diameter less than 2.5 μm (PM2.5). However, scientific data on fine PM emissions from various point sources and their characteristics are very limited. Source apportionment methods are applied to identify contributions of individual regional sources to tropospheric particulate concentrations. The existing industrial database developed using traditional source measurement techniques provides total emission rates only, with no details on chemical nature or size characteristics of particulates. This database is inadequate, in current form, to address source-receptor relationships.

A source dilution system was developed for sampling and characterization of total PM, PM2.5, and PM10 (i.e., PM with aerodynamic diameter less than 10 μm) from residual oil and coal combustion. This new system has automatic control capabilities for key parameters, such as relative humidity (RH), temperature, and sample dilution. During optimization of the prototype equipment, three North American coal blends were burned using a 0.7-megawatt thermal (MWt) pulverized coal-fired, pilot-scale boiler. Characteristic emission profiles, including PM2.5 and total PM soluble acids, and elemental and carbon concentrations for three coal blends are presented.  相似文献   
926.
Abstract

Forest, agricultural, rangeland, wetland, and urban landscapes have different rates of carbon sequestration and total carbon sequestration potential under alternative management options. Changes in the proportion and spatial distribution of land use could enhance or degrade that area’s ability to sequester carbon in terrestrial ecosystems. As the ecosystems within a landscape change due to natural or anthropogenic processes, they may go from being a carbon sink to a carbon source or vice versa. Satellite image analysis has been tested for timely and accurate measurement of spatially explicit land use change and is well suited for use in inventory and monitoring of terrestrial carbon. The coupling of Landsat Thematic Mapper (TM) data with a physiologically based forest productivity model (PnET-II) and historic climatic data provides an opportunity to enhance field plot-based forest inventory and monitoring methodologies. We use periodic forest inventory data from the U.S. Department of Agriculture (USDA) Forest Service’s Forest Inventory and Analysis (FIA) Program to obtain estimates of forest area and type and to generate estimates of carbon storage for evergreen, deciduous, and mixed-forest classes. The area information is used in an accuracy assessment of remotely sensed forest cover at the regional scale. The map display of modeled net primary production (NPP) shows a range of forest carbon storage potentials and their spatial relationship to other landscape features across the southern United States. This methodology addresses the potential for measuring and projecting forest carbon sequestration in the terrestrial biosphere of the southern United States.  相似文献   
927.
Abstract

This paper presents an overview of a major, long-term program for tropospheric gas and aerosol research in the southeastern United States. Building on three existing ozone (O3)-focused research sites begun in mid-1992, the Southeastern Aerosol Research and Characterization Study (SEARCH) was initiated in mid-1998 as a 7-year observation and research program with a broader focus including aerosols and an expanded geographical coverage in the Southeast. The monitoring network comprises four urban-rural (or urban-suburban) site pairs at locations along the coast of the Gulf of Mexico and inland, including two moderately sized and two major urban areas (Pensacola, FL; Gulfport, MS; Atlanta, GA; and Birmingham, AL). The sites are equipped with an extensive suite of instruments for measuring particulate matter (PM), gases relevant to secondary O3 and the production of secondary aerosol particles, and surface meteorology. The measurements taken to date have added substantially to the knowledge about the temporal behavior and geographic variability of tropospheric aerosols in the Southeast. Details are presented in four papers to follow.  相似文献   
928.
Abstract

An analysis of ozone (O3) concentrations and several other air quality-related variables was performed to elucidate their relationship with visibility at five urban and semi-urban locations in the southeast United States during the summer seasons of 1980-1996. The role and impact of O3 on aerosols was investigated to ascertain a relationship with visibility. Regional trend analysis over the 1980s reveals an increase in maximum O3 concentration coupled with a decrease in visibility. However, a similar analysis for the 1990s shows a leveling-off of both O3 and visibility; in both cases, the results were not statistically significant at the 5% level. A case study of site-specific trends at Nashville, TN, followed similar trends. To better understand the relationships between O3 concentration and visibility, the analysis was varied from yearly through daily to hourly averaged values. This increased temporal resolution showed a statistically significant inverse relationship between visibility and O3. Site-specific hourly r2 values ranged from 0.02 to 0.43. Additionally, by performing back-trajectory analysis, it was found that the visibility degraded by air mass migration over polluted areas.  相似文献   
929.
Leaves of Tendergreen bean plants exposed to atmospheric fluoride concentrations in the range 1.7 to 7.6 μg/m3 showed increased levels of enolase and catalase activity and decreased levels of pyruvate and α-ketoglutarate. Phosphoenolpyruvate carboxylase activity and oxalacetate were not affected. The leaves of Milo maize plants exposed to 5.0 μg F/m3 showed increased levels of enolase and pyruvate kinase activity and a decreased level of pyruvate. Oxalacetate and α-ketoglutarate levels were not affected. Catalase activity was increased, then decreased by IIF fumigation. The changes induced by HF were greatest six to 10 days after the start of fumigation and disappeared or decreased in magnitude during the post-fumigation period.  相似文献   
930.
The role of nucleating particulates in the formation of photochemical aerosols has been studied in a steady, laminar flow of ultrafiltered air containing NO2 and octene-1 in the concentration range of (30 to 170 ppm) when subjected to intense irradiation under isothermal conditions. The particulates consisted of monodisperse polystyrene latex (d = 0.36 μ.) in concentrations similar to those in the atmosphere (6 × 101 to 3 × 103 cm–3); the irradiation intensity varied between (6 to 40 × 103 lumen/liter) and the mean exposure duration between 30 and 180 sec. Samples of the flow prior to and after its photoactivation were withdrawn either by an Aerosol Spectrometer (AS) or by a Royco Aerosol Photometer (PH). While these indications refer thus to the same system, they differ, because the photometric data include all colloidal components in the airborne state, whereas the counts obtained from the AS deposits refer only to the nucleated latex particles. The following pattern becomes evident: The photochemical reaction yields fractional products (less than three percent) which have the tendency to agglomerate (or polymerize) due to their relatively low volatility—independent of the presence or absence of nucleating particulates. In their presence, this reaction becomes kinetically more probable and thus faster, hence the accumulant formation occurs preferably on the nuclei and causes their growth such that, e.g., a 10-fold higher nuclei concentration will produce under the same conditions 10 times the accumulant mass while autonucleation is suppressed. The growth process appears thus principally different from that of fog formation by H2O-condensation, whereas for identical super saturation it is inversely proportional to the nuclear concentration. In the absence of nuclei autonucleation, i.e., self-agglomeration, occurs at a much lesser reaction rate and higher photon demand. The growth rate of the nuclei, when present, depends on the concentration of the oxidation catalyst (NO2), its interaction with the nuclei surface is indicated. Under identical conditions the mass of nuclear accumulant is directly proportional to the concentration of the reactive hydrocarbon, while the growth rate depends on the light intensity and the exposure duration. The findings indicate that density and nature of particulate matter present in an air mass prior or during photo-activation are—aside from the chemical reactant levels—of major significance in aerosol formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号