首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19900篇
  免费   260篇
  国内免费   178篇
安全科学   679篇
废物处理   766篇
环保管理   3013篇
综合类   2978篇
基础理论   5334篇
环境理论   7篇
污染及防治   5140篇
评价与监测   1279篇
社会与环境   999篇
灾害及防治   143篇
  2022年   146篇
  2021年   170篇
  2020年   147篇
  2019年   207篇
  2018年   302篇
  2017年   326篇
  2016年   473篇
  2015年   342篇
  2014年   474篇
  2013年   1582篇
  2012年   600篇
  2011年   837篇
  2010年   700篇
  2009年   703篇
  2008年   875篇
  2007年   882篇
  2006年   838篇
  2005年   665篇
  2004年   719篇
  2003年   645篇
  2002年   597篇
  2001年   792篇
  2000年   533篇
  1999年   337篇
  1998年   280篇
  1997年   277篇
  1996年   277篇
  1995年   294篇
  1994年   320篇
  1993年   264篇
  1992年   282篇
  1991年   249篇
  1990年   279篇
  1989年   261篇
  1988年   211篇
  1987年   187篇
  1986年   174篇
  1985年   189篇
  1984年   209篇
  1983年   203篇
  1982年   201篇
  1981年   207篇
  1980年   155篇
  1979年   167篇
  1978年   143篇
  1977年   121篇
  1975年   123篇
  1974年   118篇
  1973年   113篇
  1972年   137篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
931.
An assessment of the pollution status of River Illo, located within River Owo catchments area in Ota, Ogun State, Nigeria, was carried out. The River’s response to deoxygenation due to BOD loading from an abattoir and its dissolved oxygen (DO) level was predicted using the modified Streeter-Phelps model. The average concentrations of measured parameters at the sampling stations include: 2.24 mg/l of DO, 312.85 mg/l of BOD, 782.86 mg/l of chemical oxygen demand, and 620.76 g/l of total solids. The DO model for River Illo showed a positive correlation between measured and calculated DO, while the dissolved oxygen curve gave a double spoon shape of two major segments with distinct zones of degradation, decomposition, and recovery. The self-purification factor (f) for both segments ranged between 0.8 and 1.1 depicting River Illo as a slow moving or sluggish river. The above results revealed slow reaeration of the water body while full recovery from pollution was difficult. The treatment of River Illo before usage is very essential to ensure public health safety of users from waterborne diseases.  相似文献   
932.
The Rodopi mountain range is located between Greece and Bulgaria and constitutes a natural and political boundary whose crest delimits the frontier between the two countries. However, these two neighboring countries have significant differences: Greece is one of the oldest members of the European Union (EU) while Bulgaria has just recently entered the European family. As a result, the existing financial and political differences between the two nations are also reflected in issues concerning the environmental know-how, education, and training, since Greece seems to have a small lead in these fields. On the other hand, given that Bulgaria possesses exceptional scientific personnel, it has made significant progress in all aspects of environmental policy during the last decade by absorbing up-to-date knowledge and putting it into practice; thus, catching up with the other EU countries in environmental issues is just a matter of time. Taking these factors into account, the Department of Forestry and Natural Environment Management of the Technological Educational Institute of Kavala (Greece) and the Department of Geography-Ecology and Natural History (Bulgaria) prepared a joint proposal which was approved and financed by the European Union Initiative ΙNTERREG IIIΑ/PHARE CBC GREECE-BULGARIA. The proposal concerns the Rodopi mountains and focuses on integrated environmental education, technology exchange, and transfer between the two institutions. The Rodopi complex constitutes a very important ecosystem of particular ecological and biological interest for both countries. This paper reveals the cooperation possibilities on environmental education and know-how exchange with regard to the shared natural resources of these contiguous countries.  相似文献   
933.
Despite increasingly large investments, the potential ecological effects of river restoration programs are still small compared to the degree of human alterations to physical and ecological function. Thus, it is rarely possible to “restore” pre-disturbance conditions; rather restoration programs (even large, well-funded ones) will nearly always involve multiple small projects, each of which can make some modest change to selected ecosystem processes and habitats. At present, such projects are typically selected based on their attributes as individual projects (e.g., consistency with programmatic goals of the funders, scientific soundness, and acceptance by local communities), and ease of implementation. Projects are rarely prioritized (at least explicitly) based on how they will cumulatively affect ecosystem function over coming decades. Such projections require an understanding of the form of the restoration response curve, or at least that we assume some plausible relations and estimate cumulative effects based thereon. Drawing on our experience with the CALFED Bay-Delta Ecosystem Restoration Program in California, we consider potential cumulative system-wide benefits of a restoration activity extensively implemented in the region: isolating/filling abandoned floodplain gravel pits captured by rivers to reduce predation of outmigrating juvenile salmon by exotic warmwater species inhabiting the pits. We present a simple spreadsheet model to show how different assumptions about gravel pit bathymetry and predator behavior would affect the cumulative benefits of multiple pit-filling and isolation projects, and how these insights could help managers prioritize which pits to fill.  相似文献   
934.
To avoid increasing costs of landfill disposal, it has become increasingly important for U.S. foundries to identify beneficial reuses for the 8 to 12 million tons of waste foundry sand (WFS) generated annually. A major drawback to the reuse of some WFSs as a soil amendment is their high soil strength, under dry conditions, where root growth may be limited. Fifteen WFSs were analyzed for strength to rupture using lab-formed clods, exchangeable cations (Na, Mg, Ca), metal oxide concentration (Fe, Mn, Al, Si), cation exchange capacity (CEC), and % clay. Several WFS samples from gray iron foundries demonstrated high strength to rupture values (> 1.5 MPa), and could potentially restrict root growth in amended soils. The percentage of Na-bentonite exhibited a positive correlation (R(2) = 0.84) with strength to rupture values. When WFSs containing more Na-bentonite were saturated with 1 mol L(-1) Ca ions, strength values decreased by approximately 70%. Waste foundry sands containing less Na-bentonite were saturated with 1 mol L(-1) Na ions and exhibited a threefold increase in strength. Additions of gypsum (up to 9.6 g kg(-1) sand) to high strength waste foundry sands also caused decreases in strength. These results indicate that high strength WFSs have properties similar to hardsetting soils which are caused by high Na(+) clay content and can be ameliorated by the addition of Ca(2+).  相似文献   
935.
Some speculate that bioaerosols from land application of biosolids pose occupational risks, but few studies have assessed aerosolization of microorganisms from biosolids or estimated occupational risks of infection. This study investigated levels of microorganisms in air immediately downwind of land application operations and estimated occupational risks from aerosolized microorganisms. In all, more than 300 air samples were collected downwind of biosolids application sites at various locations within the United States. Coliform bacteria, coliphages, and heterotrophic plate count (HPC) bacteria were enumerated from air and biosolids at each site. Concentrations of coliforms relative to Salmonella and concentrations of coliphage relative to enteroviruses in biosolids were used, in conjunction with levels of coliforms and coliphages measured in air during this study, to estimate exposure to Salmonella and enteroviruses in air. The HPC bacteria were ubiquitous in air near land application sites whether or not biosolids were being applied, and concentrations were positively correlated to windspeed. Coliform bacteria were detected only when biosolids were being applied to land or loaded into land applicators. Coliphages were detected in few air samples, and only when biosolids were being loaded into land applicators. In general, environmental parameters had little impact on concentrations of microorganisms in air immediately downwind of land application. The method of land application was most correlated to aerosolization. From this large body of data, the occupational risk of infection from bioaerosols was estimated to be 0.78 to 2.1%/yr. Extraordinary exposure scenarios carried an estimated annual risk of infection of up to 34%, with viruses posing the greatest threat. Risks from aerosolized microorganisms at biosolids land application sites appear to be lower than those at wastewater treatment plants, based on previously reported literature.  相似文献   
936.
Water-soluble anionic polyacrylamide (WSPAM), which is used to reduce erosion in furrow irrigated fields and other agriculture applications, contains less than 0.05% acrylamide monomer (AMD). Acrylamide monomer, a potent neurotoxicant and suspected carcinogen, is readily dissolved and transported in flowing water. The study quantified AMD leaching losses from a WSPAM-treated corn (Zea mays L.) field using continuous extraction-walled percolation samplers buried at 1.2 m depth. The samplers were placed 30 and 150 m from the inflow source along a 180-m-long corn field. The field was furrow irrigated using WSPAM at the rate of 10 mg L(-1) during furrow advance. Percolation water and furrow inflows were monitored for AMD during and after three furrow irrigations. The samples were analyzed for AMD using a gas chromatograph equipped with an electron-capture detector. Furrow inflows contained an average AMD concentration of 5.5 microg L(-1). The AMD in percolation water samples never exceeded the minimum detection limit and the de facto potable water standard of 0.5 microg L(-1). The risk that ground water beneath these WSPAM-treated furrow irrigated soils will be contaminated with AMD appears minimal.  相似文献   
937.
Watershed vulnerability predictions for the Ozarks using landscape models   总被引:1,自引:0,他引:1  
Forty-six broad-scale landscape metrics derived from commonly used landscape metrics were used to develop potential indicators of total phosphorus (TP) concentration, total ammonia (TA) concentration, and Escherichia coli bacteria count among 244 sub-watersheds of the Upper White River (Ozark Mountains, USA). Indicator models were developed by correlating field-based water quality measurements and contemporaneous remote-sensing-based ecological metrics using partial least squares (PLS) analyses. The TP PLS model resulted in one significant factor explaining 91% of the variability in surface water TP concentrations. Among the 18 contributing landscape model variables for the TP PLS model, the proportions of a sub-watershed that are barren and in human use were key indicators of water chemistry in the associated sub-watersheds. The increased presence and reduced fragmentation of forested areas are negatively correlated with TP concentrations in associated sub-watersheds, particularly within close proximity to rivers and streams. The TA PLS model resulted in one significant factor explaining 93% of the variability in surface water TA concentrations. The eight contributing landscape model variables for the TA PLS model were among the same forest and urban metrics for the TP model, with a similar spatial gradient trend in relationship to distance from streams and rivers within a sub-watershed. The E. coli PLS model resulted in two significant factors explaining 99.7% of the variability in E. coli cell count. The 17 contributing landscape model variables for the E. coli PLS model were similar to the TP and TA models. The integration of model results demonstrates that forest, riparian, and urban attributes of sub-watersheds affect all three models. The results provide watershed managers in the Ozark Mountains with a broad-scale vulnerability prediction tool, focusing on TP, TA, and E. coli, and are being used to prioritize and evaluate monitoring and restoration efforts in the vicinity of the White River, a major tributary to the Mississippi River and Gulf of Mexico.  相似文献   
938.
Leaching of nitrogen (N) after forest fertilization has the potential to pollute ground and surface water. The purpose of this study was to quantify N leaching through the primary rooting zone of N-limited Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] forests the year after fertilization (224 kg N ha(-1) as urea) and to calculate changes in the N pools of the overstory trees, understory vegetation, and soil. At six sites on production forests in the Hood Canal watershed, Washington, tension lysimeters and estimates of the soil water flux were used to quantify the mobilization and leaching of NO(3)-N, NH(4)-N, and dissolved organic nitrogen below the observed rooting depth. Soil and vegetation samples were collected before fertilization and 1 and 6 mo after fertilization. In the year after fertilization, the total leaching beyond the primary rooting zone in excess of control plots was 4.2 kg N ha(-1) (p = 0.03), which was equal to 2% of the total N applied. The peak NO(3)-N concentration that leached beyond the rooting zone of fertilized plots was 0.2 mg NO(3)-N L(-1). Six months after fertilization, 26% of the applied N was accounted for in the overstory, and 27% was accounted for in the O+A horizon of the soil. The results of this study indicate that forest fertilization can lead to small N leaching fluxes out of the primary rooting zone during the first year after urea application.  相似文献   
939.
A systems approach was used to evaluate environmental loading of Cryptosporidium oocysts on five coastal dairies in California. One aspect of the study was to determine Cryptosporidium oocyst concentrations and loads for 350 storm runoff samples from dairy high use areas collected over two storm seasons. Selected farm factors and beneficial management practices (BMPs) associated with reducing the Cryptosporidium load in storm runoff were assessed. Using immunomagnetic separation (IMS) with direct fluorescent antibody (DFA) analysis, Cryptosporidium oocysts were detected on four of the five farms and in 21% of storm runoff samples overall. Oocysts were detected in 59% of runoff samples collected near cattle less than 2 mo old, while 10% of runoff samples collected near cattle over 6 mo old were positive. Factors associated with environmental loading of Cryptosporidium oocysts included cattle age class, 24 h precipitation, and cumulative seasonal precipitation, but not percent slope, lot acreage, cattle stocking number, or cattle density. Vegetated buffer strips and straw mulch application significantly reduced the protozoal concentrations and loads in storm runoff, while cattle exclusion and removal of manure did not. The study findings suggest that BMPs such as vegetated buffer strips and straw mulch application, especially when placed near calf areas, will reduce environmental loading of fecal protozoa and improve stormwater quality. These findings are assisting working dairies in their efforts to improve farm and ecosystem health along the California coast.  相似文献   
940.
Sediment is an important pollutant for Lake Erie and its tributaries as a carrier of other substances and as a pollutant in its own right. Environmental managers have called for major reductions in sediment loadings in Lake Erie tributaries. In this study, 30-yr (1975-2005) datasets with daily resolution are analyzed to identify and interpret trends in sediment concentrations and loads in major US tributaries to Lake Erie. The Maumee and Sandusky Rivers in agricultural northwest Ohio show continual decreases throughout this period, but the River Raisin shows increases, especially in the last decade. The urban and forested Cuyahoga River shows little trend before 2000 but shows increases since then. The mostly forested Grand River shows strong decreases before 1995, little change thereafter until the early 2000s, and then increases. In most cases, the greatest decreases or smallest increases, depending on the river, are associated with summer and fall and with low flow conditions, whereas the smallest decreases or greatest increases are associated with the spring and with high flow conditions. Analysis of concentration-flow relationships indicates that these changes are not due to weather but reflect positive and negative anthropogenic influences. Sediment decreases in the northwestern Ohio tributaries seem to reflect the successful use of agricultural practices to reduce erosion and prevent sediment loss. Opportunities for further reductions in sediment loads and concentrations lie in better management of sediment losses during winter and spring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号