首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  国内免费   2篇
废物处理   7篇
环保管理   1篇
综合类   6篇
基础理论   2篇
污染及防治   6篇
评价与监测   4篇
  2022年   6篇
  2021年   5篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2002年   2篇
  1991年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
11.
For the past quarter century, the government of Singapore has redeveloped the city with multiple objectives. The city should be free of squatters, slums and pollutive influences. It should be clean, green and healthy for living. All necessary infrastructures are provided and function well. All the necessary building floor spaces are available to facilitate the daily needs of the people and to enhance economic growth.While all of these objectives should be kept and augmented, the city must now update its position and even give added attention to the quality of the living environment, visual and otherwise, in order to make Singapore a tropical city of excellence. This paper attempts to review the past achievements and outline the approaches envisaged for the near future.Plenary speaker.  相似文献   
12.
Agroforestry is considered to be a promising alternative to short-fallow shifting cultivation or other monocropping systems. An on-farm experiment was established in 1996 in northern Viet Nam to examine the contribution of the leguminous bush Tephrosia candida (Roxb.) D.C. as a fallow or hedgerow species and as a mulch producer to improve nutrient cycling and prevent nutrient losses by erosion. The systems tested were upland rice monocropping (Mono), natural fallow (NaFa), fallow of Tephrosia (TepFa), hedgerow intercropping with upland rice (Oryza sativa L.) and internal mulching using pruned Tephrosia biomass (TepAl), and upland rice with external mulching using Tephrosia biomass (TepMu). Over two cropping seasons, from April 1996 to April 1998, nutrients recycled and inputs and exports were recorded, as well as changes in C-, N- and P-pools, and in pH in the 0–5 cm topsoil layer.The Tephrosia systems (TepFa, TepAl, TepMu) prevented nutrient losses by erosion effectively. Compared to the NaFa system, the TepFa system accumulated 34% more N in the above-ground plant parts and increased topsoil N by 20%, probably due to N-fixation. There was a trend that the less labile P-pools (NaOH-P) were reallocated into the more labile P-pools (Bicarb-P) in the soil of the TepFa system. Burning released significant amounts of the inorganic P-pools in both the NaFa and TepFa systems and this effect seemed to be more pronounced in the TepFa than in the NaFa. Organic input to crop export ratios for N and P were >1 in the TepAl and TepMu treatments. This was due to a sufficient quantity and quality of the Tephrosia mulching material. However, moderately labile NaOH-extractable organic P seemed to be depleted in the topsoil due to high P uptake in the TepMu treatment. Thus, nutrient cycling and nutrient balances were improved under the Tephrosia systems. But for long-term P sustainability, there is a belief that a combined use of mulching and mineral P fertiliser is needed.  相似文献   
13.
In the isolated Aluoi Valley of central Viet Nam, very high levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were measured in soil, fish fat, duck fat, pooled human blood and breast milk samples collected from A So village between 1996 and 1999. The village was situated on a former military base occupied by US Special Forces between 1963 and 1966. TCDD was a contaminant of the herbicide "Agent Orange", aerially sprayed in the valley between 1965 and 1970, and stored at the A So base. Measured levels were lower near the sites of two other former US bases in the valley which had been occupied for shorter periods of time. In areas where Agent Orange had been applied by low-flying aircraft, levels of TCDD in soil, food and human samples were elevated, but lower than those near the three former US bases. We confirm the apparent food chain transfer of TCDD from contaminated soil to cultured fish pond sediments to fish and duck tissues, then to humans as measured in whole blood and breast milk. We theorize that the Aluoi Valley is a microcosm of southern Viet Nam, where numerous reservoirs of TCDD exist in the soil of former military installations south of the former demilitarized zone. Large quantities of Agent Orange were stored at many sites, used in ground and aerial applications, and spilled. TCDD, through various forms of soil disturbance, can be mobilized from these reservoirs after decades below the surface, and subsequently, introduced into the human food chain.  相似文献   
14.
Sustainable development is a widespread concept. Indicator selection and sustainability assessment are basic methods to analyse the sustainable development process. This study aims to develop a software application to select indicators and to allocate weightings to the indicators and the sub-indexes, so that they can be listed in a sustainability assessment. The Visual Basic software is used to develop a software package based on Delphi, analytic hierarchy, normalization and combination processes. Software for sustainability assessment was developed. Thirty-five indicators are selected as a first step of which eight health indicators and eight environmental ones and their sub-indexes are given weightings. The indicators are normalized. Sub-indexes are combined into a composite sustainable development index. The model is validated showing the ‘main features’ of the sustainability situation on health and environmental aspects in the Quang Tri province during the period 2000–2005. The results support the decision-making process of the competent authorities.  相似文献   
15.
Journal of Material Cycles and Waste Management - Over 60 million tons of aluminium are produced annually, requiring sustainable and eco-friendly recycling methods of aluminium waste. In this work,...  相似文献   
16.
Energy and environment are major global issues inducing environmental pollution problems. Energy generation from conventional fossil fuels has been identified as the main culprit of environmental quality degradation and environmental pollution. In order to address these issues, nanotechnology plays an essential role in revolutionizing the device applications for energy conversion and storage, environmental monitoring, as well as green engineering of environmental friendly materials. Carbon nanotubes and their hybrid nanocomposites have received immense research attention for their potential applications in various fields due to their unique structural, electronic and mechanical properties. Here, we review the applications of carbon nanotubes (1) in energy conversion and storage such as in solar cells, fuel cells, hydrogen storage, lithium ion batteries and electrochemical supercapacitors, (2) in environmental monitoring and wastewater treatment for the detection and removal of gas pollutants, pathogens, dyes, heavy metals and pesticides and (3) in green nanocomposite design. Integration of carbon nanotubes in solar and fuel cells has increased the energy conversion efficiency of these energy conversion applications, which serve as the future sustainable energy sources. Carbon nanotubes doped with metal hydrides show high hydrogen storage capacity of around 6?wt% as a potential hydrogen storage medium. Carbon nanotubes nanocomposites have exhibited high energy capacity in lithium ion batteries and high specific capacitance in electrochemical supercapacitors, in addition to excellent cycle stability. High sensitivity and selectivity towards the detection of environmental pollutants are demonstrated by carbon nanotubes based sensors, as well as the anticipated potentials of carbon nanotubes as adsorbent to remove environmental pollutants, which show high adsorption capacity and good regeneration capability. Carbon nanotubes are employed as reinforcement material in green nanocomposites, which is advantageous in supplying the desired properties, in addition to the biodegradability. This article presents an overview of the advantages imparted by carbon nanotubes in electrochemical devices of energy applications and green nanocomposites, as well as nanosensor and adsorbent for environmental protection.  相似文献   
17.

Prediction of water quality is a critical issue because of its significant impact on human and ecosystem health. This research aims to predict water quality index (WQI) for the free surface wetland using three soft computing techniques namely, adaptive neuro-fuzzy system (ANFIS), artificial neural networks (ANNs), and group method of data handling (GMDH). Seventeen wetland points for a period of 14 months were considered for monitoring water quality parameters including conductivity, suspended solid (SS), biochemical oxygen demand (BOD), ammoniacal nitrogen (AN), chemical oxygen demand (COD), dissolved oxygen (DO), temperature, pH, phosphate nitrite, and nitrate. The sensitivity analysis performed by ANFIS indicates that the significant parameters to predict WQI are pH, COD, AN, and SS. The results indicated that ANFIS with Nash-Sutcliffe Efficiency (NSE = 0.9634) and mean absolute error (MAE = 0.0219) has better performance to predict the WQI comparing with ANNs (NSE = 0.9617 and MAE = 0.0222) and GMDH (NSE = 0.9594 and MAE = 0.0245) models. However, ANNs provided a comparable prediction and the GMDH can be considered as a technique with an acceptable prediction for practical purposes. The findings of this study could be used as an effective reference for policy makers in the field of water resource management. Decreasing variables, reduction of running time, and high speed of these approaches are the most important reasons to employ them in any aquatic environment worldwide.

  相似文献   
18.
Journal of Polymers and the Environment - Oil spills causes severe degradation to marine ecosystems and poses long term health effects on many animals on the food chain, including humans. A...  相似文献   
19.

The study tries to discover the impact of financial and social indicators’ growth towards environmental considerations to understand the drivers of economic growth and carbon dioxide emissions change in G7 countries. The DEA-like composite index has been used to examine the tradeoff between financial and social indicator matters in environmental consideration by using a multi-objective goal programming approach. The data from 2008 to 2018 is collected from G-7 countries. The results from the DEA-like composite index reveals that there is a mixed condition of environmental sustainability in G-7 countries where the USA is performing better and Japan is performing worse among the set of other countries. The further result shows that the energy and fiscal indicators help to decrease the dangerous gas emissions. Divergent to that, the human and financial index positively contributes to greenhouse gas emissions. Fostering sustainable development is essential to successfully reduce emissions, meet established objectives, and ensure steady development. The study provides valuable information for policymakers.

  相似文献   
20.
The global waste sector produces, on average, 2–5 % of global anthropogenic greenhouse gas (GHG) emissions. The amount of GHG emissions has grown steadily and is predicted to increase considerable in the forthcoming decades because of the increases in population and gross domestic product (GDP). However, the GHG mitigation opportunities for the sector are still fully not exploited, in particularly in developing countries. A series of initiatives were highly successful and showed that large reductions in emissions are possible. This study aims to propose a holistic quantification model, which can be used for estimation of waste generation and evaluation of the potential reduction of GHG emissions in waste sector for developing countries with a particular application to Vietnam. The two scenarios set for the study were business as usual (BaU) which waste management is assumed to follow past and current trends and CounterMeasure (CM) which alternative waste treatment and management are assessed. Total emissions in the BaU scenario are projected to increase from 29.47 MtCO2eq in 2010 to 85.60 MtCO2eq by 2030 and 176.32 MtCO2eq by 2050. The highest emissions are due to methane (CH4) released by disposal sites, accounting for about 60 % of the GHG emissions from waste in Vietnam in 2030. This emission is projected to increase significantly (67 % in 2050), unless more of the methane is captured and used for energy generation. The CM scenario gives emission reductions from 25.7 % (2020), 40.5 % (2030) to 56.6 % (2050) compared to the BaU scenario. The highest GHG reduction is achieved through recycling, followed by methane recovery to optimize the co-benefit for climate change mitigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号