首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
污染及防治   10篇
评价与监测   2篇
社会与环境   4篇
  2014年   1篇
  2013年   3篇
  2011年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1990年   1篇
  1986年   1篇
  1982年   3篇
  1980年   1篇
排序方式: 共有16条查询结果,搜索用时 406 毫秒
11.
Air quality in urban areas attracts great attention due to increasing pollutant emissions and their negative effects on human health and environment. Numerous studies, such as those by Mouilleau and Champassith (J Loss Prevent Proc 22(3): 316–323, 2009), Xie et al. (J Hydrodyn 21(1): 108–117, 2009), and Yassin (Environ Sci Pollut Res 20(6): 3975–3988, 2013) focus on the air pollutant dispersion with no buoyancy effect or weak buoyancy effect. A few studies, such as those by Hu et al. (J Hazard Mater 166(1): 394–406, 2009; J Hazard Mater 192(3): 940–948, 2011; J Civ Eng Manag (2013)) focus on the fire-induced dispersion of pollutants with heat buoyancy release rate in the range from 0.5 to 20 MW. However, the air pollution source might very often be concentrated and intensive, as a consequence of the hazardous materials fire. Namely, transportation of fuel through urban areas occurs regularly, because it is often impossible to find alternative supply routes. It is accompanied with the risk of fire accident occurrences. Accident prevention strategies require analysis of the worst scenarios in which fire products jeopardize the exposed population and environment. The aim of this article is to analyze the impact of wind flow on air pollution and human vulnerability to fire products in a street canyon. For simulation of the gasoline tanker truck fire as a result of a multivehicle accident, computational fluid dynamics large eddy simulation method has been used. Numerical results show that the fire products flow vertically upward, without touching the walls of the buildings in the absence of wind. However, when the wind velocity reaches the critical value, the products touch the walls of the buildings on both sides of the street canyon. The concentrations of carbon monoxide and soot decrease, whereas carbon dioxide concentration increases with the rise of height above the street canyon ground level. The longitudinal concentration of the pollutants inside the street increases with the rise of the wind velocity at the roof level of the street canyon.  相似文献   
12.
An index for indoor environmental quality, the Indoor Environmental Index (IEI), was developed. This study aggregates the Indoor Air Pollution Index, an index found in the literature, and a new index: the Indoor Discomfort Index. The average of these two indices is the IEI, which is calculated using concentrations of eight pollutants and two comfort variables measured in 100 office buildings in the United States. The database used was developed for the U.S. Environmental Protection Agency Building Assessment Survey Evaluation study. A symptom index also is developed to denote persistent occupant symptoms. The IEI and the symptom index are used to investigate the relationship between indoor environmental quality and symptoms. Two simple linear regression models were formulated; these models explain 67 and 79% of the variation in the average symptom index, with the variation of the average IEI depending on the method of averaging used in the construction of the models. In addition, a conceptual explanation is provided for the empirical or regression models formulated. The IEI and the associated models relating indoor environmental quality with the office occupant symptom index may be used as management tools, as illustrated with an example.  相似文献   
13.
The NO, NO2, and CO emissions from residential gas combustion appliances contribute to indoor air pollution. The work described investigated the impact of various unvented gas appliances designs and/or operational factors on pollutant emission rates. All experiments were performed in a 1150 ft3 (32.56 m3) all aluminum chamber under controlled conditions. Results are presented for the effect of the following factors on emission rates: 1) appliance type and/or design, 2) primary aeration level, 3) firing rate (fuel input rate), 4) chamber humidity, and 5) time dependence of emission rates. It is concluded that primary aeration level has the largest impact on pollutant emission rates of range-top burners, followed in turn by firing rate, appliance type, chamber humidity, and time dependence of emission rate.  相似文献   
14.
Data from suburban residences in the Boston metropolitan area reveal a potential adverse impact on indoor air quality from woodburning in woodstoves and fireplaces. Ambient pollutant concentrations at each residence were compared to corresponding pollutant levels indoors at three locations (kitchen, bedroom, and activity room). Individual gaseous pollutant samples were averaged on an hourly basis while 24-h integrated samples of particulate matter were obtained. Ten gaseous pollutants were sampled along with total suspended particulates (TSP). Chemical analyses further determined ten components of TSP including trace metals, benzo-a-pyrene(B)aP, respirable suspended particulates (RSP), and water soluble sulfates and nitrates. Monitoring lasted two weeks at each residence and was conducted under occupied, real-life, conditions. Observed, elevated indoor concentrations of TSP, RSP, and BaP are attributed to woodburning. Data indicate that average indoor TSP concentrations during woodburning periods were about three times corresponding levels during nonwoodburning periods. The primary 24-h national ambient air quality standard (NAAQS) for TSP was exceeded once indoors during fireplace use, and the secondary, 24-h TSP NAAQS, was also exceeded indoors by RSP concentrations. Indoor BaP concentrations during woodstove use averaged five times more than during nonwoodburning periods. At this stage, results are only indicative, but the potential impact from elevated indoor concentrations of TSP, RSP, and BaP, attributed to woodburning, may have long-term health implications.  相似文献   
15.
The indoor air of 60 residences in and around a Maryland suburb of Washington, DC, was monitored in a pilot study to determine residential radon concentrations. In each residence, a radon grab sample was acquired in the living room, and, if possible, in the basement. Infiltration rates were determined by tracer gas dilution. To help standardize sampling conditions, each home remained closed up for 8 h prior to sampling and during analysis. Over 60% of the residences sampled showed air infiltration rates below 0.6 air changes per hour. Approximately 55% of all surveyed basements and 30% of all surveyed living areas displayed radon concentrations in excess of 4.0 nCi m−3. Assuming an equilibrium factor of 0.5, these radon levels may lead to working levels above the annual guidelines suggested by EPA for florida homes build on land reclaimed from phosphate mining.  相似文献   
16.
A spatial comparison of pollutant concentrations within the residential environment is undertaken, comparing pollutant concentrations from three indoor sampling locations (zones). The indoor air quality base was obtained from sampling the indoor air of 12 residential sites and two office buildings in the metropolitan Boston area. Each residential site was monitored continuously for two weeks, and data were reduced into hourly averages. Interzonal comparisons of the mean of hourly averages, 24-h averages, and daily maximum hourly concentrations were made at all sites. Linear regressions were computed between daily maximum hourly concentrations and mean 24-h concentrations of NO, NO2, and CO for kitchens to determine whether maximum hourly concentrations could be predicted from the 24-h concentration. These pollutants show interzonal statistical differences in residences with gas-fired cooking facilities but not in residences with electric cooking facilities. It was determined that, while one indoor sampling zone is not sufficient to specify indoor pollutant concentration maxima in residences having indoor sources of pollution, the daily mean of hourly pollutant concentrations obtained from one indoor zone can adequately describe the indoor environment. In addition, the maximum indoor hourly concentration for NO, NO2, and CO can be estimated for residences with all electric facilities, by using the mean 24-h concentration. The reliability of similar estimates for NO, NO2, and CO in residences with unvented gas appliances is reduced because of substantially more scatter in the paired data point, particularly at higher pollutant concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号