首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8072篇
  免费   90篇
  国内免费   244篇
安全科学   159篇
废物处理   394篇
环保管理   920篇
综合类   1357篇
基础理论   1976篇
污染及防治   1994篇
评价与监测   607篇
社会与环境   951篇
灾害及防治   48篇
  2023年   58篇
  2022年   130篇
  2021年   104篇
  2020年   67篇
  2019年   99篇
  2018年   145篇
  2017年   155篇
  2016年   214篇
  2015年   159篇
  2014年   259篇
  2013年   696篇
  2012年   280篇
  2011年   375篇
  2010年   310篇
  2009年   342篇
  2008年   394篇
  2007年   401篇
  2006年   308篇
  2005年   291篇
  2004年   288篇
  2003年   280篇
  2002年   267篇
  2001年   339篇
  2000年   216篇
  1999年   115篇
  1998年   86篇
  1997年   84篇
  1996年   107篇
  1995年   126篇
  1994年   96篇
  1993年   85篇
  1992年   90篇
  1991年   92篇
  1990年   79篇
  1989年   71篇
  1988年   69篇
  1987年   75篇
  1986年   52篇
  1985年   63篇
  1984年   63篇
  1983年   59篇
  1982年   58篇
  1981年   64篇
  1980年   47篇
  1979年   46篇
  1977年   38篇
  1976年   36篇
  1974年   34篇
  1973年   43篇
  1972年   51篇
排序方式: 共有8406条查询结果,搜索用时 31 毫秒
641.
The water bodies of Lucknow, Unnao and Kanpur (U.P.), India polluted through various point and non point sources were found to be either eutrophic or oligotrophic in nature. These water bodies supported a great number of algal diversity, which varied seasonally depending upon the physico-chemical properties of water. Further, the water bodies polluted through non point sources supports diverse algal species, while the water bodies polluted through point sources supports growth of tolerant blue green algae. High biomass producing algal species growing in these water bodies have accumulated significant amount of metals in their tissues. Maximum amount of Fe was found accumulated by species of Oedogonium sp. II (20,523.00 mug g(-1) dw) and Spirogyra sp. I (4,520.00 mug g(-1) dw), while maximum Chromium (Cr) was found accumulated in Phormedium bohneri (2,109.00 mug g(-1) dw) followed by Oscillatoria nigra (1,957.88 mug g(-1) dw) and Oedogonium sp. I (156.00 mug g(-1) dw) and Ni in Ulothrix sp. (495.00 mug g(-1) dw). Results showed that some of these forms growing in polluted environment and accumulating high amounts of toxic metals may be used as bioindicator species, however, their performance in metal contaminated water under different ecological niche is to be ascertained.  相似文献   
642.
A combined semi-distributed hydrological model (CASCADE/QUESTOR) is used to evaluate the steady-state that may be achieved after changes in land-use or management and to explore what additional factors need to be considered in representing catchment processes. Two rural headwater catchments of the River Derwent (North Yorkshire, UK) were studied where significant change in land-use occurred in the 1990s and the early 2000s. Much larger increases in mean nitrate concentration (55%) were observed in the catchment with significant groundwater influence (Pickering Beck) compared with the surface water-dominated catchment (13% increase). The increases in Pickering Beck were considerably greater than could be explained by the model in terms of land-use change. Consequently, the study serves to focus attention on the long-term increases in nitrate concentration reported in major UK aquifers and the ongoing and chronic impact this trend is likely to be having on surface water concentrations. For river environments, where groundwater is a source, such trends will mask the impact of measures proposed to reduce the risk of nitrate leaching from agricultural land. Model estimates of within-channel losses account for 15–40% of nitrate entering rivers.  相似文献   
643.
Biomonitoring of contaminants (metals, organotins, polyaromatic hydrocarbons (PAHs), PCBs) was undertaken in Milford Haven Waterway (MHW) and a reference site in the Tywi Estuary (St Ishmael/Ferryside) during 2007–2008. Bioindicator species encompassed various uptake routes—Fucus vesiculosus (dissolved contaminants); Littorina littorea (grazer); Mytilus edulis and Cerastoderma edule (suspension feeders); and Hediste (=Nereis) diversicolor (sediments). Differences in feeding and habitat preference have subtle implications for bioaccumulation trends though, with few exceptions, contaminant burdens in MHW were higher than the Tywi reference site, reflecting inputs. Elevated metal concentrations were observed at some MHW sites, whilst As and Se (molluscs and seaweed) were consistently at the higher end of the UK range. However, for most metals, distributions in MH biota were not exceptional. Several metal-species combinations indicated increases in bioavailability upstream, which may reflect the influence of geogenic/land-based sources—perhaps enhanced by lower salinity. TBT levels in MH mussels were below OSPAR toxicity thresholds and in the Tywi were close to zero. Phenyltins were not accumulated appreciably in M. edulis, whereas some H. diversicolor populations appear subjected to localized (historical) sources. PAHs in H. diversicolor were distributed evenly across most of MHW, although acenaphthene, fluoranthene, pyrene, benzo(a)anthracene and chrysene were highest at one site near the mouth; naphthalenes in H. diversicolor were enriched in the mid-upper Haven (a pattern seen in M. edulis for most PAHs). Whilst PAH (and PCB) concentrations in MH mussels were mostly above reference and OSPAR backgrounds, they are unlikely to exceed ecotoxicological thresholds. Bivalve Condition indices (CI) were highest at the Tywi reference site and at the seaward end of MH, decreasing upstream—giving rise to several significant (negative) relationships between CI and body burdens. Despite the possible influence of salinity gradient as a complicating factor, multivariate analysis indicated that a combination of contaminants could influence the pattern in condition (and the biomarkers metallothionein and TOSC). Integrating bioaccumulation data with biological and biochemical endpoints is seen as a useful way to discriminate environmental quality of moderately contaminated areas such as MHW and to prioritise cause and effect investigations.  相似文献   
644.
We investigated the influence on bacterial community and biochemical variables through mechanical disturbance of sediment-akin to small-scale mining in Kalbadevi beach, Ratnagiri, a placer-rich beach ecosystem which is a potential mining site. Changes were investigated by comparing three periods, namely phase I before disturbance, phase II just after disturbance, and phase III 24 h after disturbance as the bacterial generation time is ≤7 h. Cores from dune, berm, high-, mid-, and low-tide were examined for changes in distribution of total bacterial abundance, total direct viability (counts under aerobic and anaerobic conditions), culturability and biochemical parameters up to 40 cm depth. Results showed that bacterial abundance decreased by an order from 106 cells g − 1 sediment, while, viability reduced marginally. Culturability on different-strength nutrient broth increased by 155% during phase II. Changes in sedimentary proteins, carbohydrates, and lipids were marked at berm and dune and masked at other levels by tidal influence. Sedimentary ATP reduced drastically. During phase III, Pearson’s correlation between these variables evolved from non-significant to significant level. Thus, simulated disturbance had a mixed effect on bacterial and biochemical variables of the sediments. It had a negative impact on bacterial abundance, viability and ATP but positive impact on culturability. Viability, culturability, and ATP could act as important indicators reflecting the disturbance in the system at short time intervals. Culturability, which improved by an order, could perhaps be a fraction that contributes to restoration of the system at bacterial level. This baseline information about the potential mining site could help in developing rational approach towards sustainable harnessing of resources with minimum damage to the ecosystem.  相似文献   
645.
The World Health Organization has estimated that air pollution is responsible for 1.4 % of all deaths and 0.8 % of disability-adjusted life years. NOIDA, located at the National Capital Region, India, was declared as one of the critically air-polluted areas by the Central Pollution Control Board of the Government of India. Studies on the relationship of reduction in lung functions of residents living in areas with higher concentrations of particulate matter (PM) in ambient air were inconclusive since the subjects of most of the studies are hospital admission cases. Very few studies, including one from India, have shown the relationship of PM concentration and its effects of lung functions in the same location. Hence, a cross-sectional study was undertaken to study the effect of particulate matter concentration in ambient air on the lung functions of residents living in a critically air-polluted area in India. PM concentrations in ambient air (PM1, PM2.5) were monitored at residential locations and identified locations with higher (NOIDA) and lower concentrations (Gurgaon). Lung function tests (FEV1, PEFR) were conducted using a spirometer in 757 residents. Both air monitoring and lung function tests were conducted on the same day. Significant negative linear relationship exists between higher concentrations of PM1 with reduced FEV1 and increased concentrations of PM2.5 with reduced PEFR and FEV1. The study shows that reductions in lung functions (PEFR and FEV1) can be attributed to higher particulate matter concentrations in ambient air. Decline in airflow obstruction in subjects exposed to high PM concentrations can be attributed to the fibrogenic response and associated airway wall remodeling. The study suggests the intervention of policy makers and stake holders to take necessary steps to reduce the emissions of PM concentrations, especially PM1, PM2.5, which can lead to serious respiratory health concerns in residents.  相似文献   
646.
Sequential chemical extraction using chelating agents were used to study the P dynamics and its bioavailability along the surface sediments of the Cochin estuary (southwest coast of India). Sediments were analyzed for major P species (iron bound P, calcium bound P, acid soluble organic P, alkali soluble organic P and residual organic P), Fe, Ca, total carbon, organic carbon, total nitrogen and total sulfur contents. An abrupt increase in the concentration of dissolved inorganic P with increasing salinity was observed in the study region. Iron-bound P exhibited a distinct seasonal pattern with maximum values in the monsoon season when fresh water condition was prevailed in the estuary. As salinity increased, the percentage of iron-bound P decreased, while that of calcium-bound P and total sedimentary sulfur increased. C/P and N/P ratios were low which indicate that large amounts of organic matter enriched with P tend to accumulate in surface sediments. The high organic P contribution in the sedimentary P pool may indicate high organic matter load with incomplete mineralization, as well as comparatively greater percentage of humic substance and resistant organic compounds. Principal component analysis is employed to find the possible processes influencing the speciation of P in the study region and indicate the following processes: (1) the spatial and seasonal variations of calcium bound P and acid soluble organic P was mainly controlled by sediment texture and organic carbon content, (2) sediment redox conditions control the distribution of iron bound P and (3) the terrigenous input of organic P is a significant processes controlling total P content in surface sediments. The bioavailable P was very high in the surface sediments which on an average accounts for 59 % in the pre-monsoon, 65 % in the monsoon and 53 % in the post-monsoon seasons. The surface sediments act as a potential internal source of P in the Cochin estuary.  相似文献   
647.
The glyphosate-based herbicide, Roundup®, is one of the most used pesticides worldwide. In concert with the advent of transgenic crops resistant to glyphosate, the use of this pesticide has led to an increase in agricultural yields. The objective of this study was to evaluate the genotoxic effect that the herbicide Roundup® (at a concentration of 6.67 μg/L, corresponding to 3.20 μg/L glyphosate) can have on the fish Corydoras paleatus. Treatment groups were exposed for 3, 6, and 9 days, and effects were analyzed using the piscine micronucleus test (PMT) and comet assay. A group subjected to filtered water only was used as a negative control. The PMT did not show differences between the control and exposed groups for any of the treatment times. In contrast, the comet assay showed a high rate of DNA damage in group exposed to Roundup® for all treatment times, both for blood and hepatic cells. We conclude that for the low concentration used in this research, the herbicide shows potential genotoxic effects. Future research will be important in evaluating the effects of this substance, whose presence in the environment is ever-increasing.  相似文献   
648.
In this report, the development of an online, noninvasive, measurement method of the biofilm thickness in a liquid phase is presented. The method is based in the analysis of the ultrasound wave pulse-echo behavior in a liquid phase reproducing the real reactor conditions. It does not imply the removal of the biomass from the support or any kind of intervention in the support (pipes) to detect and perform the measurements (non-invasiveness). The developed method allows for its sensor to be easily and quickly mounted and unmounted in any location along a pipe or reactor wall. Finally, this method is an important innovation because it allows the thickness measurement of a biofilm, in liquid phase conditions that can be used in monitoring programs, to help in scheduling cleaning actions to remove the unwanted biofilm, in several application areas, namely in potable water supply pipes.  相似文献   
649.
Shoreline change analysis of Vedaranyam coast, Tamil Nadu, India   总被引:2,自引:0,他引:2  
The coastal zone is one of the nation’s greatest environmental and economic assets. The present research aims at studying the shoreline changes along Vedaranyam coast using conventional and modern techniques including field sampling, remote sensing, and geographical information system (GIS). The study area was divided into three zones. Dynamic Land/Sea polygon analysis was performed to obtain the shore line changes at different time periods between 1930 and 2005. From the multidate shoreline maps, the rate of shoreline change was computed using linear regression rate and end point rate. Further, the shoreline was classified into eroding, accreting, and stable regions through GIS analysis. The eroding, accreting, and stable coastal stretch along Vedaranyam is observed as 18 %, 80.5 %, and 1.5 %, respectively. Net shoreline movement is seaward, i.e., the coast is progressive with an average rate of 5 m/year. A maximum shoreline displacement of 1.3 km towards the sea is observed near Point Calimere. During the Asian Tsunami 2004, the eastern part of the study area showed high erosion. Sediment transport paths derived from the grain size analysis of beach sediments collected during different seasons help to identify the major sediment source and sinks. Point Calimere acts as the major sink for sediments whereas Agastiyampalli and Kodiakkarai are found to be the major sources for the sediment supply along the Vedaranyam coast. Shoreline change study from field and satellite data using GIS analysis confirms that Vedaranyam coast is accreting in nature.  相似文献   
650.
The incorporation of nanoparticles in industrial and biomedical applications has increased significantly in recent years, yet their hazardous and toxic effects have not been studied extensively. While standard toxicological test methods are generally capable of detecting the toxic effects, the choice of relevant methods for nanomaterials is still discussed. Among the various oxide nanomaterials, silica nanoparticles are widely used in biological applications that include nano-medicine. But studies on adverse effects of silica nanoparticle exposure to fish remain unclear. Therefore, the present study was designed to investigate the oxidative toxic effects of silicon dioxide nanoparticles using fish model. The size of the SiO2 nanoparticles was between 68 and 100 nm which was confirmed by X-ray diffractometer, dynamic light scattering, scanning electron microscope and transmission electron microscope. The zebra fish were exposed to sub-lethal concentrations (5 and 2.5 mg/L) of characterized SiO2 nanoparticles for a period of 7 days. After 7 days, SiO2 nanoparticle-treated fishes were sacrificed, and tissues such as liver, muscle and gill were dissected out for the analysis of antioxidant enzymes and DNA fragmentation. The DNA profiles were analysed in the tissues of zebra fish that treated with SiO2 nanoparticles. Tissues of fish from clean water were used as control, and DNA profiles were analysed. It is found that DNA from control tissues was intact, whereas the tissues treated with SiO2 were all fragmented. SiO2 nanoparticle-mediated antioxidant enzymes activities, such as catalase, superoxide dismutase, glutathione (GSH)-S-transferase, glutathione reductase and GSH, in the tissues of zebra fish were measured. The results revealed that alteration of antioxidant enzymes due to SiO2 nanoparticle can be considered as a biomarker to SiO2-mediated oxidative stress in biological samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号