首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2081篇
  免费   21篇
  国内免费   87篇
安全科学   88篇
废物处理   223篇
环保管理   216篇
综合类   209篇
基础理论   352篇
环境理论   2篇
污染及防治   781篇
评价与监测   193篇
社会与环境   103篇
灾害及防治   22篇
  2023年   36篇
  2022年   94篇
  2021年   70篇
  2020年   23篇
  2019年   47篇
  2018年   61篇
  2017年   89篇
  2016年   108篇
  2015年   56篇
  2014年   82篇
  2013年   169篇
  2012年   124篇
  2011年   140篇
  2010年   112篇
  2009年   126篇
  2008年   135篇
  2007年   116篇
  2006年   107篇
  2005年   94篇
  2004年   90篇
  2003年   60篇
  2002年   65篇
  2001年   49篇
  2000年   22篇
  1999年   14篇
  1998年   13篇
  1997年   8篇
  1996年   10篇
  1995年   10篇
  1994年   5篇
  1993年   7篇
  1992年   1篇
  1991年   7篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1971年   1篇
  1965年   1篇
  1959年   1篇
排序方式: 共有2189条查询结果,搜索用时 437 毫秒
181.
182.
Arsenic and other trace element concentrations were determined for tube-well water collected in the Lao PDR provinces of Attapeu, Bolikhamxai, Champasak, Savannakhet, Saravane, and Vientiane. Water samples, especially from floodplain areas of central and southern Laos, were significantly contaminated not only with As, but with B, Ba, Mn, U, and Fe as well. Total As concentrations ranged from <0.5 μg L−1 to 278 μg L−1, with over half exceeding the WHO guideline of 10 μg L−1. 46% of samples, notably, were dominated by As(III). Samples from Vientiane, further north, were all acceptable except on pH, which was below drinking water limits. A principal component analysis found associations between general water characteristics, As, and other trace elements. Causes of elevated As concentrations in Lao tube wells were considered similar to those in other Mekong River countries, particularly Cambodia and Vietnam, where young alluvial aquifers give rise to reducing conditions.  相似文献   
183.
Using canonical correspondence analysis (CCA), relationships were investigated between plant species composition and flooding characteristics, heavy metal contamination and soil properties in a lowland floodplain of the Rhine River. Floodplain elevation and yearly average flooding duration turned out to be more important for explaining variation in plant species composition than soil heavy metal contamination. Nevertheless, plant species richness and diversity showed a significant decrease with the level of contamination. As single heavy metal concentrations seemed mostly too low for causing phytotoxic effects in plants, this trend is possibly explained by additive effects of multiple contaminants or by the concomitant influences of contamination and non-chemical stressors like flooding. These results suggest that impacts of soil contamination on plants in floodplains could be larger than expected from mere soil concentrations. In general, these findings emphasize the relevance of analyzing effects of toxic substances in concert with the effects of other relevant stressors.  相似文献   
184.
This study was conducted to assess inhalation exposure to dust, endotoxin, and microorganisms (including viable bacteria, Gram-negative bacteria [GNB], and fungi) during waste collection and sorting; to identify factors affecting this exposure; and to estimate the gastrointestinal exposure to microorganisms. A total of 48 or 49 workers involved in collecting and sorting waste from households or the street were studied. Each worker carried two personal samplers in which filters were placed in the breathing zone for estimation of inhalation exposure. To assess the possibility of gastrointestinal exposure, microorganisms on the workers' faces were collected before and after work and compared with those collected from office workers. Inhalation exposure levels were categorized according to job title, waste type handled, and working conditions and were compared using analysis of variance. Multiple regression models were developed to identify those factors that substantially affected inhalation exposure. The average exposure level to total dust was 0.9 mg/m3 (range = 0.05 to 4.51 mg/m3), and the average exposure to endotoxin was 1123 EU/m3. The average respective exposure levels to bacteria, GNB, and fungi each exceeded 10(4) colony forming units (CFU)/m3. The multiple regression models found several factors that significantly explained the variation in levels of inhalation exposure to endotoxin and microorganisms; namely, sex (dust, bacteria, and GNB), job title (GNB and fungi), collection day (dust, bacteria, and GNB), temperature (endotoxin and GNB), humidity (endotoxin and fungi), and region (endotoxin) were significantly associated with exposure to these agents. In addition, the workers' faces were highly contaminated with microorganisms. In conclusion, inhalation exposure to endotoxin and microorganisms was high during waste collection and sorting, which may place workers at risk of developing various health problems, including respiratory complaints.  相似文献   
185.
This study investigated the effect of adding vanadium (V) to natural manganese oxide (NMO) in ammonia (NH3) selective catalytic reduction (SCR). The addition of V to NMO decreased the catalytic activity at low temperatures by blocking the active site. However, the enhancement of catalytic activity was achieved by controlling NH3 oxidation at high temperatures. From the NH3 temperature programmed desorption and oxygen on/off test, it was confirmed that the amount of Lewis acid site and active lattice oxygen of the catalyst affects the catalytic performance at low temperature.  相似文献   
186.
Selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator was investigated using LCA. The relationship between NOx-cleaning and ammonia dosage was measured at the plant. Un-reacted ammonia - the ammonia slip - leaving the flue-gas cleaning system adsorbed to fly-ash or in the effluent of the acidic scrubber was quantified from the stoichiometric reaction of NOx and ammonia assuming no other reaction products was formed. Of the ammonia slip, 37% was associated with the fly-ash and 63% was in the effluent of the acidic scrubber. Based on NOx-cleaning efficiency, the fate of the ammonia slip as well as the environmental impact from ammonia production, the potential acidification and nutrient enrichment from NOx-cleaning was calculated as a function of ammonia dosage. Since the exact fate of the ammonia slip could not be measured directly, a number of scenarios were set up ranging from “best case” with no ammonia from the slip ending up in the environment to “worst case” where all the ammonia slip eventually ended up in the environment and contributed to environmental pollution. In the “best case” scenario the highest ammonia dosage was most beneficial demonstrating that the environmental load associated with ammonia production is of minor importance. In contrast, in a “worst case” scenario” NOx-cleaning using SNCR is not recommendable at all, since the impacts from the ammonia slip exceed the saved impacts from the NOx removal. Increased dosage of ammonia for removal of NOx is recommendable as long as less than 10-20% of the ammonia slip to the effluent of the acidic scrubber ends up in the environment and less than 40% of the slip to the fly-ash ends up in the environment. The study suggests that the actual fate of the ammonia slip is crucial, but since the release of the ammonia may take place during transport and at the facilities that treat the wastewater and treat the fly-ash this factor depends strongly on local conditions and may be hard to determine. Thus, LCA-modeling proved useful in assessing the balance between ammonia dosage and NOx-removal in flue-gas cleaning from waste incineration.  相似文献   
187.

Introduction

Korea has been making efforts to reduce greenhouse gas (GHG) emissions, including a voluntary commitment to the target of a 30% reduction, based on business-as-usual of the total GHG emission volume, by 2020; 2006 IPCC Guidelines provided default values, applying country-specific emission factors was recommended when estimating national greenhouse gas emissions.

Results and discussion

This study focused on anthracite produced in Korea in order to provide basic data for developing country-specific emission factor. This study has estimated CO2 emission factors to use worksheet of which five steps consisted according to the fuel analysis method.

Conclusion

As a result, the average of net colorific value for 3 years (2007??2009) was 4,519 kcal/kg, and the CO2 emission factor was calculated to be 111,446 kg/TJ, which is about 11.8% lower than the 2006 IPCC guidelines default value, and about 7.9% higher than the US EPA emission factor.  相似文献   
188.
To report a novel metallothionein (MT) gene and evaluate its potency as a biomarker, we clone this MT gene and measured the expression levels in the metal-exposed polychaete Perinereis nuntia. Accumulated metal contents and metallothionein-like proteins (MTLPs), which have been recognized as potential biomarkers, were compared with the relative mRNA expressions of the MT gene of P. nuntia (Pn-MT). In addition, the metal-binding affinity was estimated by recombinant Pn-MT protein. Pn-MT having high cysteine residues with three metal response elements in the promoter region closely clusters with those of other invertebrates. The accumulation patterns of metals were dependent on the exposure times in lead (Pb), cadmium (Cd), and copper (Cu) exposure. Particularly, both MTLP levels and relative mRNA expressions of MT were increased with accumulated metal contents and exposure time in P. nuntia exposed to Pb and Cd. There was no significant modulation of the Pn-MT gene in polychaetes exposed to Zn and As. However, the metal-binding ability of the recombinant Pn-MT protein provides a clear evidence for a high affinity of MT to several metal elements. These results suggest that Pn-MT would play an important role in the detoxification and/or sequestration of specific metals (e.g., Pb and Cd) in P. nuntia and have potential as a molecular biomarker in the monitoring of the marine environment using a polychaete.  相似文献   
189.
The costs associated with eight food waste disposal options, dry feeding, wet feeding, composting, anaerobic digestion, co-digestion with sewage sludge, food waste disposer, incineration, and landfilling, were evaluated in the perspective of global warming and energy and/or resource recovery. An expanded system boundary was employed to compare by-products. Life cycle cost was analyzed through the entire disposal process, which included discharge, separate collection, transportation, treatment, and final disposal stages, all of which were included in the system boundary. Costs and benefits were estimated by an avoided impact. Environmental benefits of each system per 1 tonne of food waste management were estimated using carbon prices resulting from CO(2) reduction by avoided impact, as well as the prices of by-products such as animal feed, compost, and electricity. We found that the cost of landfilling was the lowest, followed by co-digestion. The benefits of wet feeding systems were the highest and landfilling the lowest.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号