Environmental Science and Pollution Research - Studying the effects of precipitation on carbon exchange in grassland ecosystems is critical for revealing the mechanisms of the carbon cycle. In this... 相似文献
A number of recent studies have demonstrated that electrochemical technologies, including electroreduction (ER), electrocoagulation (EC), and electrodialysis (ED), are effective in nitrate elimination in wastewater due to their high reactivity. To obtain the maximal elimination efficiency and current efficiency, many researchers have conducted experiments to investigate the optimal conditions (i.e., potential, current density, pH value, plate distance, initial nitrate concentration, electrolyte, and other factors) for nitrate elimination. The mechanism of ER, EC and ED for nitrate removal has been fully elucidated. The ER mechanism of nitrate undergoes electron transfer and hydrogenation reduction. The EC pathways of nitrate removal include reduction, coagulation and flotation. The ED pathways of nitrate include redox reaction and dialysis. Although the electrochemical technology can remove nitrate from wastewater efficiently, many problems (such as relatively low selectivity toward nitrogen, sludge production and brine generation) still hinder electrochemical treatment implementation. This paper critically presents an overview of the current state-of-the-art of electrochemical denitrification to enhance the removal efficiency and overcome the shortages, and will significantly improve the understanding of the detailed processes and mechanisms of nitrate removal by electrochemical treatment and provide useful information to scientific research and actual practice.
To explore the effect of traffic emissions on air quality within street canyon, the wind flow and pollutant dispersion distribution in urban street canyons of different H/W, building gap and wind direction are studied and discussed by 3D computational fluid dynamics simulations. The largest PM2.5 concentrations are 46.4, 37.5, 28.4 µg/m3 when x = ? 88, ? 19.3, ? 19.3 m in 1.5 m above the ground level and the ratio of H/W is 1:1, 1:2 and 2:1, respectively. The flow around the top of the building and clearance flow between the buildings in street canyon influence by different H/W, which affected the diffusion of fine particulate matters. The largest PM2.5 concentrations are 88.1, 31.6 and 33.7 µg/m3 when x = 148.0, ? 92.3 and ? 186.7 m above the ground level of 1.5 m height and the building gap of 0, 20 and 40%, respectively. The air flows are cut by the clearance in the street canyons, and present the segmental characteristics. The largest PM2.5 concentrations are 10.6, 11.2 and 16.0 µg/m3 when x = 165.3 m, x = 58.0 and 1.5 m above the ground level of 1.5 m height and wind direction of the parallel to the street, perpendicular to the street and southwest, respectively. Modelled PM2.5 concentrations are basic agreement with measured PM2.5 concentrations for southwest wind direction. These results can help analyze the difussion of PM2.5 concentration in street canyons and urban planning.
Methotrexate(MTX)is a cytotoxic drug widely used in the treatment of tumors,autoimmune diseases and severe asthma. jen00883 This drug has been frequently detected in the aquatic environment with concentrations up to μg/L levels. The MTX present in environmental water might be transformed and removed during chlorination disinfection treatment. In this work,the fate of MTX during aqueous chlorination was investigated in laboratory batch experiments,and the transformation products of MTX were identified. Aqueous solutions of MTX(1 mg/L)were chlorinated by sodium hypochlorite solution at room temperature under neutral p H conditions. Chlorinated products were pre-concentrated with solid-phase extraction(SPE)cartridges and determined by liquid chromatography electrospray ionization tandem mass spectrometry(LC–ESI–MS/MS). The reaction of MTX chlorination exhibited pseudo-first-order kinetics and the half-life time of MTX degradation was calculated to be 1.65 min,when the initial chlorine concentration was 2 mg/L. Two chlorinated MTX congeners,4-amino-3-chlorinated-N10-methylpteroylglutamic(monochloro-MTX)and 4-amino-3,5-dichloro-N10-methylpteroylglutamic(dichloro-MTX)were found in the chlorinated solution. Monochloro-MTX was successfully fractionated by high performance liquid chromatography(HPLC)and its structure was further identified using ~1H nuclear magnetic resonance(NMR)analysis. The presence of the two products in real hospital wastewater was then examined and both compounds were detected. Finally,the effects of MTX and monochloro-MTX on the cell cycle progression in vitro were evaluated using zebrafish liver cell line. It was found that both compounds could inhibit the proliferation of zebrafish liver cells through S phase arrest and their effects on the cell cycle profile had no significant difference. 相似文献