首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15538篇
  免费   158篇
  国内免费   126篇
安全科学   374篇
废物处理   666篇
环保管理   1794篇
综合类   2540篇
基础理论   4308篇
环境理论   4篇
污染及防治   4025篇
评价与监测   1056篇
社会与环境   963篇
灾害及防治   92篇
  2022年   127篇
  2021年   104篇
  2020年   100篇
  2019年   106篇
  2018年   195篇
  2017年   233篇
  2016年   326篇
  2015年   266篇
  2014年   452篇
  2013年   1202篇
  2012年   491篇
  2011年   691篇
  2010年   613篇
  2009年   581篇
  2008年   671篇
  2007年   713篇
  2006年   589篇
  2005年   513篇
  2004年   521篇
  2003年   507篇
  2002年   489篇
  2001年   647篇
  2000年   475篇
  1999年   254篇
  1998年   173篇
  1997年   206篇
  1996年   205篇
  1995年   236篇
  1994年   234篇
  1993年   180篇
  1992年   195篇
  1991年   183篇
  1990年   203篇
  1989年   187篇
  1988年   151篇
  1987年   162篇
  1986年   153篇
  1985年   156篇
  1984年   148篇
  1983年   140篇
  1982年   125篇
  1981年   120篇
  1980年   115篇
  1979年   124篇
  1978年   100篇
  1977年   113篇
  1975年   87篇
  1974年   87篇
  1973年   96篇
  1972年   86篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Flood resilience has been rising up the political, economic and social agendas. Taking an integrated systems approach, using the right design guidance and tools and ensuring that education is in place for all stakeholders are three themes which are intrinsically linked to delivering flood resilience. This paper reviews these themes across the academic research, policy landscape and practitioner approaches, drawing conclusions on the way forward to increase our societies resilience to floods. The term ‘flood resilience’ is being increasingly used, however, it remains to be clearly defined and implemented. The UK, USA and Australia are leading the way in considering what flood resilience really means, but our review has found few examples of action underpinned by an understanding of systems and complexity. This review investigates how performance objectives & indicators are currently interpreted in guidance documents. It provides an in-depth exploration of the methods, that although developed through European and US expertise, can be used for worldwide application. Our analysis highlights that resilience is often embedded in engineering education and frequently linked to risk. This may however, mask the importance of resilience and where it differs from risk. With £2.6 billion to be spent in the UK over the next 6 years on strengthening the country’s flood and coastal defences, this is the opportunity to rethink resilience from a systems approach, and embed that learning into education and professional development of engineers. Our conclusions indicate how consolidating flood resilience knowledge between and within critical infrastructure sectors is the way forward to deliver flood resilience engineering.  相似文献   
972.
973.
974.
The goal of this study was to better quantify the degree of viral contamination of tomato and cucumber in relationship to virus type, soil type, and irrigation method. Tomatoes and cucumbers were grown in ten-gallon (37.8 L) buckets filled with Pima clay loam or Brazito sandy loam soils. Plants were irrigated with secondary wastewater effluent using surface drip irrigation or subsurface drip irrigation. At specified time intervals irrigation water was seeded with bacteriophages MS-2 and P22, poliovirus type 1 (PV1), enteric adenovirus 40 (Ead 40), and hepatitis A virus. Surface drip irrigation always resulted in viral contamination of both the above and below ground parts of both crops. The roots showed the greatest level of contamination, followed by leaves and fruits. In contrast, with subsurface drip irrigation no viruses were detected in any of the above ground plant surfaces. It was found that under similar soil type and irrigation method, risk of crop contamination was similar for all of the viruses studied. It can be concluded that method of irrigation is the single most critical factor in the contamination trend of different parts of crop plants. Plant parts can be categorized into three groups (root, stem, and leaf/fruit) based on the risk of viral contamination from irrigation water.  相似文献   
975.
The purpose of this study was to quantify the transfer of viral and bacterial pathogens in water used to dilute pesticides sprayed onto the surfaces of cantaloupe, iceberg lettuce, and bell peppers. The average percent transfer of bacteria was estimated to range from 0.00021 to 9.4%, while average viral transfer ranged from 0.055 to 4.2%, depending on the type of produce. Based on these values the concentrations of hepatitis A virus (HAV) and Salmonella in water necessary to achieve a 1:10,000 annual risk of infection were calculated. Under worst case scenario assumptions, in which a pesticide is applied on the same day that the produce is harvested and when maximum transfer values are used, concentrations of 1.5 × 10−3 CFU Salmonella or 2.7 × 10−7 MPN HAV per 100 ml of the water used for application would result in 1:10,000 annual infection risk to anyone who consumes the fresh produce. If harvesting does not occur until at least 14 days after the application, to produce the same risk of infection, the numbers of Salmonella in 100 ml of water used to dilute the pesticides will be greater by up to five orders of magnitude, while the HAV numbers will have increased by up to two orders of magnitude. Based on the reported concentrations of enteric viruses in surface and ground waters in the United States, a 1:10,000 annual risk of infection could easily be exceeded with some groundwater sources used in the United States. To reduce the risks associated with the consumption of fresh produce, water used to prepare pesticides in spray applications should be evaluated for its microbiological quality.  相似文献   
976.
The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO2) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO2 production by mineralization as well as CO2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of \( {0.70}_{-0.31}^{+0.27} \) to \( {1.52}_{-0.90}^{+1.09} \) Pg C yr?1 depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.  相似文献   
977.
Ash deposition impact on the energy performance of photovoltaic generators   总被引:1,自引:0,他引:1  
A little known side effect of the atmospheric air pollution is the degradation of photovoltaic (PV) cells’ performance due to the deposition of solid particles varying in composition, size and origin. In this context, an experimental-based investigation is conducted in order to compare the energy performance of two identical pairs of PV-panels; the first being clean and the second being artificially polluted with ash, i.e. a by-product of incomplete hydrocarbons’ combustion mainly originating from thermal power stations and vehicular exhausts. A series of systematic measurements of current intensity, voltage output and solar radiation are executed simultaneously for the clean and the polluted PV-panel, so that the effect of several mass depositions on the PVs’ power output, energy yield and conversion efficiency may be determined. According to the results, a considerable deterioration of the PV-panels’ performance is obtained, i.e. almost 30% energy reduction per hour or 1.5% efficiency decrease (in absolute terms) for ash accumulation on the panels’ surface reaching up to 0.4 mg/cm2.  相似文献   
978.
In this study, landmark-based methods of geometric morphometrics are used for investigating the main aspects of cranial shape transformation in the evolution of the giant panda, Ailuropoda melanoleuca. Specifically, we explore if the highly derived cranial adaptations for bamboo feeding of the living panda were developed early in the panda's lineage. Results obtained show that the overall cranial morphologies of the oldest known panda, the "pygmy" Ailuropoda microta, and the late Pleistocene Ailuropoda baconi are both very similar to that of their closest living relative, A. melanoleuca, which agrees with a previous proposal based on qualitative criteria. However, we also describe several differences between the crania of A. microta, A. baconi, and A. melanoleuca, including the development of the postorbital process, the orientation of the occipital region, and the expansion of the braincase. As a result, the cranial morphology of A. microta shows a less specialized morphology toward a fibrous and durophagous diet compared to the giant panda. These results are confirmed by a comparative analysis of the dimensions of the upper teeth in bears, which has revealed differences in relative tooth size between A. microta and A. melanoleuca, most probably as a result of mosaic evolution. Therefore, we conclude that cranial shape did not remain essentially uniform in the Ailuropoda lineage, as previously thought, but underwent a number of changes during more than 2?Myr.  相似文献   
979.
This paper looks into the differences and uncertainties in determining the impact of “metals’” emissions on human health, in Life Cycle Impact Assessment (LCIA). Metals are diverse substances, with different properties and characteristics, considered important in LCIA because of their toxicity to humans and ecosystems. First, we defined a list of the most significant metals in terms of impacts on human health. This was done according to precise criteria accounting for both physical and toxic properties of the metals. Second, we performed an LCIA on different key processes using various existing LCIA methodologies and including also USEtox: the recently developed consensus-model for LCIA. Last, we compared the results in relative terms using a contribution analysis. The analysis showed poor or no agreement between the methods: the relative contribution of each metal and of the metals in total to the total impact on human health changes greatly according to the LCIA method used. These differences are due mainly to the number of metals included in each method and to the technique used to calculate the characterization factors. Results obtained with USEtox show no apparent correlation with results calculated with other methods. At present time USEtox is recommended as the best model for LCIA on human toxicity, but mainly because of the large consensus behind it, because its uncertainties regarding metals are still high. The study gives a good and simple overview regarding the way different methods address the impact assessment for metals, and helps in the interpretation of LCIA results for actual LCA studies where metal emissions are involved.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号