首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16994篇
  免费   158篇
  国内免费   126篇
安全科学   374篇
废物处理   701篇
环保管理   1974篇
综合类   2687篇
基础理论   5214篇
环境理论   4篇
污染及防治   4106篇
评价与监测   1100篇
社会与环境   1026篇
灾害及防治   92篇
  2022年   127篇
  2021年   104篇
  2020年   100篇
  2019年   106篇
  2018年   232篇
  2017年   273篇
  2016年   404篇
  2015年   280篇
  2014年   457篇
  2013年   1207篇
  2012年   619篇
  2011年   738篇
  2010年   620篇
  2009年   587篇
  2008年   675篇
  2007年   716篇
  2006年   602篇
  2005年   825篇
  2004年   940篇
  2003年   836篇
  2002年   497篇
  2001年   648篇
  2000年   475篇
  1999年   254篇
  1998年   173篇
  1997年   206篇
  1996年   205篇
  1995年   236篇
  1994年   234篇
  1993年   180篇
  1992年   195篇
  1991年   183篇
  1990年   203篇
  1989年   187篇
  1988年   151篇
  1987年   162篇
  1986年   153篇
  1985年   156篇
  1984年   148篇
  1983年   140篇
  1982年   125篇
  1981年   120篇
  1980年   115篇
  1979年   124篇
  1978年   100篇
  1977年   113篇
  1975年   87篇
  1974年   87篇
  1973年   96篇
  1972年   86篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
861.
862.
Amendment of agricultural soils with municipal sewage sludges provides a valuable source of plant nutrients and organic matter. Nevertheless, addition of heavy metals and risks of eutrophication continue to be of concern. Metal behaviour in soils and plant uptake are dependent on the nature of the metal, sludge/soil physico-chemical properties and plant species. A pot experiment was carried out to evaluate plant production and heavy metal uptake, soil heavy metal pools and bioavailability, and soil P pools and possible leaching losses, in agricultural soils amended with sewage sludge for at least 10 years (F20) compared to non-amended soils (control). Sewage sludge application increased soil pH, N, Olsen-extractable-P, DOC and exchangeable Ca, Mg and K concentrations. Total and EDTA-extractable soil concentrations of Cu and Zn were also significantly greater in F20, and soil metal (Cu, Mn and Zn) and P fractionation altered. Compared to the control, in F20 relative amounts of acid-extractable (Mn, Zn), reducible (Mn, Zn) and oxidisable (Cu, Zn) metal fractions were greater, and a dominance of inorganic P forms was observed. Analyses of F20 soil solutions highlighted risks of PO4 and Cu leaching. However, despite the observed increases in metal bioavailability sewage sludge applications did not lead to an increase in plant shoot concentrations (in wild plants or crop species). On the contrary, depending on the plant species, Mn and Zn tissue concentrations were within the deficiency level for most plants.  相似文献   
863.
The worldwide used herbicide dichlobenil (2,6-dichlorobenzonitrile) has resulted in widespread presence of its metabolite 2,6-dichlorobenzamide (BAM) in surface water and groundwater. To evaluate the potential for natural attenuation of this BAM pollution in groundwater, we studied the degradation of BAM and dichlobenil in 16 samples of clayey till, unconsolidated sand and limestone, including sediments from both oxidized and reduced conditions. The degradation of dichlobenil occurred primarily in the upper few meters below surface, although dichlobenil was strongly sorbed to these sediments. However, the degradation of dichlobenil to BAM could not be correlated to either sorption, water chemistry, composition of soils or sediments. Degradation of dichlobenil to BAM was limited (<2% degraded) in the deeper unsaturated zones, and no degradation was observed in aquifer sediments. This illustrates, that dichlobenil transported to aquifers does not contribute to the BAM-contamination in aquifers. A small, but significant degradation of BAM was observed in the upper part of the unsaturated zones in sandy sediments, but no degradation was observed in the clayey till sediment or in the deeper unsaturated zones. The insignificant degradation of BAM in aquifer systems shows that BAM pollution detected in aquifers will appear for a long time; and consequently the potential for natural attenuation of BAM in aquifer systems is limited.  相似文献   
864.
Four organophosphorus compounds: azinphos-methyl, chlorpyrifos, malathion and malaoxon in aqueous solution were degraded by using a 125 W xenon parabolic lamp. Gas chromatography-mass spectrometry (GC-MS) was used to monitor the disappearance of starting compounds and formation of degradation products as a function of time. AChE-thermal lens spectrometric bioassay was employed to assess the toxicity of photoproducts. The photodegradation kinetics can be described by a first-order degradation curve C=C0e(-kt), resulting in the following half lives: 2.5min for azinphos-methyl, 11.6 min for malathion, 13.3 min for chlorpyrifos and 45.5 min for malaoxon, under given experimental conditions. During the photoprocess several intermediates were identified by GC-MS suggesting the pathway of OP degradation. The oxidation of chlorpyrifos results in the formation of chlorpyrifos-oxon as the main identified photoproduct. In case of malathion and azinphos-methyl the corresponding oxon analogues were not detected. The formation of diethyl (dimethoxy-phosphoryl) succinate in traces was observed during photodegradation of malaoxon and malathion. Several other photoproducts including trimethyl phosphate esters, which are known to be AChE inhibitors and 1,2,3-benzotriazin-4(3H)-one as a member of triazine compounds were identified in photodegraded samples of malathion, malaoxon, and azinphos-methyl. Based on this, two main degradation pathways can be proposed, both result of the (P-S-C) bond cleavage taking place at the side of leaving group. The enhanced inhibition of AChE observed with the TLS bioassay during the initial 30 min of photodegradation in case of all four OPs, confirmed the formation of toxic intermediates. With the continuation of irradiation, the AChE inhibition decreased, indicating that the formed toxic compounds were further degraded to AChE non-inhibiting products. The presented results demonstrate the importance of toxicity monitoring during the degradation of OPs in processes of waste water remediation, before releasing it into the environment.  相似文献   
865.
Synthesis of polyhydroxyalkanoates in municipal wastewater treatment.   总被引:1,自引:0,他引:1  
Biologically derived polyesters known as polyhydroxyalkanoates (PHAs) represent a potentially "sustainable" replacement to fossil-fuel-based thermoplastics. However, current commercial practices that produce PHA with pure microbial cultures grown on renewable, but refined, feedstocks (i.e., glucose) under sterile conditions do not represent a sustainable commodity. Here, we report on PHA production with a mixed microbial consortium indigenous to an activated sludge process on carbon present in municipal wastewaters. Reactors operated under anaerobic/aerobic and aerobic-only mode and fed primary solids fermenter liquor maintained a mixed microbial consortium capable of synthesizing PHA at 10 to 25% (w/w), while reducing soluble COD by approximately 62 to 71%. More critically, an aerobic batch reactor seeded from the anaerobic/aerobic reactor and fed fermenter liquor achieved approximately 53% PHA (w/w). Results presented suggest that environmentally benign production of biodegradable polymers is feasible. We further used PHA-rich biomass to produce a natural fiber-reinforced thermoplastic composite that can be used to offset advanced wastewater treatment costs.  相似文献   
866.
Bioremediation process on Brazil shoreline   总被引:1,自引:0,他引:1  
GOAL, SCOPE AND BACKGROUND: Bioremediation technique can be considered a promising alternative to clean oil spills using microbial processes to reduce the concentration and/or the toxicity of pollutants. To understand the importance of this work we must know that there is only little research performed to date using bioremediation techniques to clean oil spills in tropical countries. So, the main objective of this work is to analyze the behavior of a laboratory's bioremediation test using nutrients on coastal sediments. METHODS: The bioremediation process is followed through geochemical analysis during the tests. This organic material is analyzed by medium pressure liquid chromatography (MPLC), gas chromatography/flame ionization detection (GC/FID) and gas chromatography/ mass spectrometry. By microbial counting, the number of total bacteria and degrading bacteria is determined during the experiments, in order to confirm the effectiveness of the bioremediation process. The seawater obtained throughout the bioremediation process is analyzed for nutrients grade (phosphate and ammonium ions) and also for its toxicity (Microtox tests) due the presence of hydrocarbons and fertilizer. RESULTS: The results from the geochemical analyses of the oil show a relative decrease in the saturated hydrocarbon fraction that is compensated by a relative enrichment on polar compounds. It's confirmed by the fingerprint evaluation where it is possible to see a complete reduction of the normal alkanes followed by isoprenoids. Seawater analysis done by toxicity and nutrients analysis, such as microbial counting (total and degrading bacteria), confirm the fertilizer effectiveness during the bioremediation process. DISCUSSION: Results from simulating test using NPK, a low-price plant fertilizer, suggest that it's able to stimulate the degradation process. Results from medium pressure liquid chromatography (MPLC), done at two different depths (surface and subsurface), show different behavior during the biodegradation process where the later is seen to be more susceptible to microbial attack. Data from bioremediation unit shows a bigger reduction of the saturated fraction, followed by some smaller reduction of aromatic fractions, compensated by a relative increase from polar compounds (NSO). n-C17/pristane, n-C18/ fitane and pristane/fitane rates show constant values for the unity control, different from bioremediation samples which have a significant reduction, especially on subsurface areas, where a strong fall in the rates, seen to be reduced to zero over twenty days, had occurred during the first ten days. However, sample surfaces are reduced to zero in thirty days of experiments, proving that biodegradation is better on subsurfaces. Gaseous chromatography/mass spectrometry (CG/MS) analysis shows constant values to cyclic biomarker rates and aromatic compounds, suggesting that the biodegradation process is not strong enough to reduce these composites. Microbial analysis shows a reduction on heterotrophic (total bacteria) number from control unit, probably because the bacteria uses the spill oil like carbon source and energy. However, the number increases on bioremediation unit, because it uses NPK like a biostimulator. The hydrocarbonoclastic number isn't enough on the first moment, but it's detected after 30 days and quantified in all units, showing big values especially in bioremediation. Toxicity tests confirm that NPK fertilizer does not intoxicate the shoreline during the application of the bioremediation technique. Some nutrient concentration shows high values of ammonium and phosphate per bioremediation unit, reducing by the end of the experiment. CONCLUSIONS: Results reached the goal, finding a proper nutrient (NPK fertilizer) to stimulate the biodegradation process, growing bacteria responsible for reducing impact-contaminated coast ambient by oil spills. Chemical analysis of oil shows a reduction in the saturated fraction with a relative enrichment in polar composites (NSO) and the aromatic fraction from oil remaining constant. Subsurface samples show more biodegradation than surface samples, probably because the first one has higher humidity. Linear alcanes are more biodegraded than isoprenoids, confirming the biodegradation susceptibility order. Saturated cyclic biomarkers and aromatic compounds show constant behavior maybe because the nutrients or time was not enough for microorganismic attack. Fertilizer does not demonstrate any toxic effects in local biota so that it does not compromise the technique applicability and the environment is not saturated by nutrients during the simulation, especially since the coastal environment is an open system affected daily by tides. Therefore, bioremediation tests can be classified as moderate, reaching level 5 in the classification scale by Peters & Moldowan (1993). RECOMMENDATIONS AND PERSPECTIVES: The use of marine environment by the petroleum industry on exploration, production and transportation operation, transform this oil to become the most important pollutant in the oceans. Bioremediation is an important technique used to clean spilled oil impacting on shorelines, accelerating the biodegradation process by using fertilizer growing the microorganisms responsible for decontaminating the environment. We recommend confirming the efficiency of NPK nutrient used on bioremediation simulating experiments on beaches, while monitoring the chemical changes long-term. NPK fertilizer can be used to stimulate the biodegradation process on shoreline impacted by spilled oil.  相似文献   
867.
Without sediment, increasing salinity (7.3 to 29.2) and increasing temperature (12 to 22 °C) reduced the toxicity of copper to juvenile Hediste diversicolor. The LC50 values ranged from 357 gL-1 in 7.3 to 513 g L-1 in 29.2 at 12°C and from 247 to 500 g L-1 at 22°C. In deionized water all the juvenile were dead in all solutions to which copper was added (100 to 600 g L-1). Dead worms were swollen and everted their pharynxs. In higher doses of copper (500 to 600 g L-1) the worms were abnormal in behaviour in all salinities (0 to 29.2). The ability to swim or crawl was disturbed.With sediments increasing temperature and increasing salinity increased the toxicity of copper to the worms. The LC50 values ranged from 3200 to 4100 g L-1 at 22°C. The response of the juvenile to copper was antagonistic to increasing temperature and salinity and synergistic to increasing salinity and increasing temperature without and with the sediment respectively.  相似文献   
868.
Temperature from 12 to 22°C and salinity from 30.5 to 7.6 increased accumulation of copper in Hediste diversicolor. Copper accumulated ranged from 85.83 to 217.14 g g-1. Sediments reduced accumulation of copper under temperature-salinity combinations. Accumulated copper ranged from 90.19 to 153.26 g g-1.However, mortality of the worms was not solely dependent upon copper body-burden. It ranged from 34 to 45% and from 38 to 80% in the presence of sediment. A combination of osmoregulatory and thermal stresses increased the toxic effect of copper to the worms.  相似文献   
869.
A pollutant dispersion model is developed, allowing rapid evaluation of the maximum credible one-hour-average concentration on any given ground-level receptor, along with the corresponding critical meteorological conditions (wind speed and stability class) for stacks with momentum-dominated plume rise in urban or rural areas under buoyancy or no buoyancy induced dispersion. Site-specific meteorological data are not required, as the computed concentrations are maximized against all credible combinations of wind speed, stability class, and mixing height.The analysis is based on the dispersion relations of Pasquill-Gifford and Briggs for rural and urban settings respectively, the buoyancy induced dispersion correlation of Pasquill, the wind profile exponent values suggested by Irwin, the momentum plume rise relations of Briggs, as well as the Benkley and Schulman's model for the minimum mixing heights.The model is particularly suited for air pollution management studies, as it allows fast screening of the maximum impact on any selected receptor and evaluation of the ways to have this impact reduced. Also, for regulatory purposes, as it allows accurate setting of minimum stack height requirements as function of the exit gas volume and velocity, the pollutant emission rates and their hourly concentration standards, as well as the source location relative to sensitive receptors.  相似文献   
870.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号