首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   859篇
  免费   14篇
  国内免费   4篇
安全科学   43篇
废物处理   39篇
环保管理   128篇
综合类   135篇
基础理论   196篇
环境理论   2篇
污染及防治   231篇
评价与监测   68篇
社会与环境   25篇
灾害及防治   10篇
  2023年   6篇
  2022年   14篇
  2021年   26篇
  2020年   15篇
  2019年   23篇
  2018年   41篇
  2017年   28篇
  2016年   38篇
  2015年   26篇
  2014年   43篇
  2013年   67篇
  2012年   41篇
  2011年   56篇
  2010年   46篇
  2009年   46篇
  2008年   49篇
  2007年   51篇
  2006年   39篇
  2005年   29篇
  2004年   23篇
  2003年   14篇
  2002年   26篇
  2001年   13篇
  2000年   13篇
  1999年   11篇
  1998年   12篇
  1997年   3篇
  1996年   9篇
  1995年   8篇
  1994年   6篇
  1993年   5篇
  1992年   7篇
  1991年   6篇
  1990年   4篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1972年   1篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1961年   1篇
  1958年   1篇
  1956年   1篇
  1943年   1篇
  1940年   1篇
  1934年   1篇
排序方式: 共有877条查询结果,搜索用时 31 毫秒
771.
772.
This risk assessment on vinyl chloride was carried out specifically for the marine environment, according to the methodology laid down in the European Union (EU) risk assessment Regulation (1488/94) and the Technical Guidance Documents for New and Existing Substances (TGD, 1996). Vinyl chloride is used for the production of polyvinyl chloride (PVC). The study consisted of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programmes in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the Predicted Exposure Concentration (PEC) and the Predicted No-Effect Concentration (PNEC) for the marine aquatic environment. In total 6 studies for fish, 3 studies for invertebrates and one for algae have been evaluated. The appropriate assessment factors have been used to calculate a PNEC of 210 microg/l based on short-term exposure. For coastal waters and estuaries a worst case PEC of 0.15 microg/l is derived. For river waters a typical and worst case PEC of <0.008 and 0.4 microg/l is derived, respectively. These concentrations, which do not take into account any dilution within the sea, correspond to safety margins from 500 to 250,000 between the aquatic effect and the exposure concentration. Vinyl chloride is not a 'toxic, persistent and liable to bioaccumulate' substance sensu the Oslo and Paris Conventions for the Prevention of Marine Pollution (OSPAR-DYNAMEC). It can be concluded that the present use of vinyl chloride does not present a risk to the marine aquatic environment.  相似文献   
773.
This risk assessment on 1,1,2-trichloroethane (T112) was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 22 studies for fish, 45 studies for invertebrates and 9 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a PNEC value of 300 µg/l. Most of the available monitoring data apply to rivers and estuaries and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.01 µg T112/l water and a worst case PEC of 5 µg T112/l water. The calculated PEC/PNEC ratios give a safety margin of 60 to 30,000 between the predicted no effect concentration and the exposure concentration. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern is expected for food chain accumulation.  相似文献   
774.
This risk assessment on 1,1,1-trichloroethane was carried out specifically for the marine environment, accordingly to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1996). 1,1,1-trichloroethane is being phased out of most uses because of its ozone depletion potential (ODP) under the Montreal Protocol. Production for emissive uses has already been phased out end 1995 in Europe and 1996 in the United States, Japan and other industrial countries. The risk assessment study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programmes in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the Predicted Environmental Concentration (PEC) and the Predicted No-Effect Concentration (PNEC) for the marine aquatic environment. In total 14 studies for fish, 7 studies for invertebrates and 9 studies for algae have been evaluated. Both acute and chronic studies have been taken into account and the appropriate assessment factors have been used to calculate a PNEC value of 21 microg/l based on long term exposure. The PEC was derived from monitoring data. The PEC was set at 0.206 microg/l (worst case) and 0.024 microg/l (typical case) for coastal waters and estuaries and 0.6 microg/l (worst case) and <0.1 microg/l (typical case) for river waters. The calculated PEC/PNEC ratios, which do not take into account any dilution factor within the sea, correspond to a safety margin of 35 to 1000 between the aquatic effect and the exposure concentration. 1,1,1-trichloroethane is not a 'toxic, persistent and liable to bioaccumulate' substance according to the criteria as mentioned by the Oslo and Paris Conventions for the Prevention of Marine Pollution (OSPAR-DYNAMEC). It can be concluded that the present use of 1,1,1-trichloroethane does not present a risk to the marine aquatic environment.  相似文献   
775.
The goal of this work was to identify the sources of copper loads in surface urban waters using principal component analysis under the aquatic parameters data evaluation approach. Water samples from the Irai and Iguacu rivers were collected monthly during a 12-month period at two points located upstream and downstream of a metropolitan region. pH, total alkalinity, dissolved chloride, total suspended solids, dissolved organic matter, total recoverable copper, temperature, and precipitation data provided some reliable information concerning the characteristics and water quality of both rivers. Principal component analysis indicated seasonal and spatial effects on copper concentration and loads in both environments. During the rainy season, non-point sources such as urban run-off are believed to be the major source of copper in both cases. In contrast, during the lower precipitation period, the discharge of raw sewage seems to be the primary source of copper to the Iguacu River, which also exhibited higher total metal concentrations.  相似文献   
776.
Ten organochlorine compounds were identified in pools of black duck (Anas rubripes) and mallard (A. platyrhynchos) wings from the 1981–82 hunting season. Most organochlorine compounds occurred very infrequently. Among those compounds positively identified by mass spectrometry, DDE and, secondarily, PCB had the highest frequencies of occurrence. Other compounds, positively identified and occurring less frequently, included DDT, DDD, DDMU, dieldrin, heptachlor epoxide, trans-nonachlor, cis-chlordane and mirex. Compounds looked for but not positively identified include oxychlordane, cis-nonachlor, endrin, hexachlorobenzene and toxaphene. PCB levels in black duck wings declined between the 1979–80 and 1981–82 collections. PCB levels in black duck wings from the northern region of the Atlantic Flyway were higher than those in wings from the southern region. Mean DDE residues in mallard wings declined between collections and differed among flyways and regions. PCB levels in mallard wings differed only among flyways and regions.  相似文献   
777.
A pilot-scale horizontal flow constructed wetland (HFCW) system planted with common reed (Phragmites sp.) was constructed to study how hydraulic loading rate (HLR), aspect ratio, water depth, and granular medium affect to the fate of several organic matter degradation intermediates namely, acetic acid (HAc), isovaleric acid (Isoval), and dimethylsulfide (DMS). ANOVA statistical analysis performed on the data set of 8 months of operation shows that the HLR and the water depth are two major factors that control the performance of HFCWs for the target analytes. A clear difference in the HFCW effluent concentrations was obtained according to water depth. Effluents of the shallow water depth contained lower DMS (1.05-1.44 microg l-1), HAc (7.91-10.9 mg l-1), and Isoval (0.11-0.15 mg l-1) concentrations than the deeper beds (DMS: 1.68-2.40 microg l-1; HAc: 9.29-14.4 mg l-1, and Isoval: 0.20-0.31 mg l-1). Such differences could be accounted to the different formation and consumption rates of the organic matter degradation intermediates, which is related with the redox potentials (E). Indeed, it could lead to different biochemical reactions of organic matter degradation according with the E value. HLR has a statistically significant influence on the effluent HAc, Isoval, and DMS concentrations. Seasonal variability of effluent HAc concentration shows that it is independent on the HAc loading. While the loading showed no seasonal pattern, the removal efficiency was clearly higher in cold months, which suggests a predominant internal production of HAc in HFCWs in the warm season from the accumulated organic particulate matter. Similar results were also found when Isoval and DMS were considered.  相似文献   
778.
Abstract

In the last decades, the use and misuse of pesticides in the agriculture have increased, having a severe impact on ecosystems and their fauna. Although the various effects of pesticides on biodiversity have been already documented in several studies, to our knowledge no consistent overview of the impact of pesticides in vertebrates, both terrestrial and aquatic, is available. In this review, we try to present a concise compilation of the teratogenic effects of pesticides on the different classes of vertebrates – mammals, birds, reptiles, amphibians and fish.  相似文献   
779.
The removal of particulate material in the aeration basin of the activated sludge process is mainly attributed to bioflocculation and hydrolysis of particulate substrate. The bioflocculation process in the aeration tank of the activated sludge process occurs only under favorable conditions in the system, and several common operational parameters affect its performance. The principal objective of this research was to observe the effect of mixed liquor suspended solids, solids retention time (SRT), and extracellular polymer substances on the removal of particulate substrate by bioflocculation. A first-order particulate removal expression, based on flocculation, accurately described the removal rates for supernatant suspended solids and colloidal chemical oxygen demand. Based on the results presented in this investigation, a mixed liquor concentration of approximately 2200 mg/L, an SRT of at least 3 days, and a contact time of 30 minutes are needed for relatively complete removal of the particulate substrate in a plug-flow reactor.  相似文献   
780.
Larssen T  Brereton C  Gunn JM 《Ambio》2003,32(3):244-248
During much of the 1900s, the lakes in Killarney Provincial Park have been exposed to high levels of acid deposition due to sulfur emissions from the nearby metal smelters in Sudbury. The sulfur emissions from this large point source have decreased to about 10% of what they were in the 1960s. Lake water quality in Killarney Park has greatly changed in response to reduced emissions, with noticeable declines in sulfate, aluminum and calcium concentrations. Here we apply the dynamic acidification model MAGIC to 3 lakes in Killarney Park. The lakes, which have different buffering capacities and response times, were selected to represent fast, intermediate and slow recovery from acidification. The model was calibrated to match observed data for the lakes and 4 different forecast scenarios for future sulfur deposition reductions were applied. The results indicate that there is still a large potential for improvement in the water quality in Killarney. The recovery time for the different lakes varies greatly. For the lake having the slowest response time several decades are needed for the chemistry to stabilize after implementation of deposition reductions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号