首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12393篇
  免费   820篇
  国内免费   4887篇
安全科学   825篇
废物处理   805篇
环保管理   932篇
综合类   6903篇
基础理论   2348篇
环境理论   6篇
污染及防治   4810篇
评价与监测   472篇
社会与环境   434篇
灾害及防治   565篇
  2024年   62篇
  2023年   288篇
  2022年   673篇
  2021年   506篇
  2020年   367篇
  2019年   368篇
  2018年   499篇
  2017年   580篇
  2016年   688篇
  2015年   886篇
  2014年   983篇
  2013年   1279篇
  2012年   1039篇
  2011年   1200篇
  2010年   859篇
  2009年   847篇
  2008年   890篇
  2007年   696篇
  2006年   655篇
  2005年   482篇
  2004年   351篇
  2003年   437篇
  2002年   383篇
  2001年   313篇
  2000年   342篇
  1999年   399篇
  1998年   328篇
  1997年   311篇
  1996年   295篇
  1995年   260篇
  1994年   177篇
  1993年   156篇
  1992年   113篇
  1991年   98篇
  1990年   68篇
  1989年   60篇
  1988年   52篇
  1987年   31篇
  1986年   35篇
  1985年   11篇
  1984年   11篇
  1983年   10篇
  1982年   10篇
  1981年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
891.
This study develops fine temporal (seasonal, day-of-week, diurnal) and vertical allocations of anthropogenic emissions for the TRACE-P inventory and evaluates their impacts on the East Asian air quality prediction using WRF-Chem simulations in July 2001 at 30-km grid spacing against available surface measurements from EANET and NEMCC. For NO2 and SO2, the diurnal and vertical redistributions of emissions play essential roles, while the day-of-week variation is less important. When all incorporated, WRF-Chem best simulates observations of surface NO2 and SO2 concentrations, while using the default emissions produces the worst result. The sensitivity is especially large over major cities and industrial areas, where surface NO2 and SO2 concentrations are reduced by respectively 3–7 and 6–12 ppbv when using the scaled emissions. The incorporation of all the three redistributions of emissions simulates surface O3 concentrations higher by 4–8 ppbv at night and 2–4 ppbv in daytime over broad areas of northern, eastern and central China. To this sensitivity, the diurnal redistribution contributes more than the other two.  相似文献   
892.
Based on environmental monitoring data in 93 major cities and meteorological records at 398 weather stations in China from 1981 to 2007, total suspended particle (TSP) concentration, the intensity of dustfall, and sand and dust storm frequency (Fd) were analysed. During the past 27 years, the annual average TSP concentration (CTSP) in 93 cities was 402 μg m?3. Annual average CTSP decreased from the north to the south and from inland to the coast areas with a peak value of 628.8 μg m?3 in Lanzhou. In the 1980s, 1990s and 2000s, annual average CTSP was 628.7, 319.2, and 250.1 μg m?3, respectively. Annual average intensity of dustfall (Id) was 240.5 t km?2 a?1, decreased from northern to southern China and from inland to the coast areas with the maximum value of 717.2 t km?2 a?1 in Baotou. In the 1980s, 1990s and 2000s, annual average Id was 334.8, 220.9, 146 t km?2 a?1 respectively. Annual average Id in the Loess Plateau region was commonly higher than 200 t km?2 a?1. The annual average Fd decreased from arid regions in northwestern China to humid areas in southeastern China with two sand and sand storm centers existing in Xinjiang Taklamakan Desert and western Inner Mongolia. The annual average Fd in the 1980s, 1990s, 2000s was 16, 8, 6 days respectively, decreased steadily from 18 days in 1981–5 days in 2007. Annual average Id had a positive linear relation to annual average CTSP (R2 = 0.96). Annual average Fd had a positive relation with annual average CTSP (R2 = 0.97) as well as annual average Id (R2 = 0.94). TSP was the chief pollutant influencing Air Pollution Index (API) in northern China in spring and winter seasons. Sand and dust storm might be a major factor affecting the temporal variability and spatial distribution of TSP and dustfall in China.  相似文献   
893.
894.
Intensive measurements of aerosol (PM10) and associated water-soluble ionic and carbonaceous species were conducted in Guangzhou, a mega city of China, during summer 2006. Elevated levels of most chemical species were observed especially at nighttime during two episodes, characterized by dramatic build-up of the biomass burning tracers levoglucosan and non-sea-salt potassium, when the prevailing wind direction had changed due to two approaching tropical cyclones. High-resolution air mass back trajectories based on the MM5 model revealed that air masses with high concentrations of levoglucosan (43–473 ng m?3) and non-sea-salt potassium (0.83–3.2 μg m?3) had passed over rural regions of the Pearl River Delta and Guangdong Province, where agricultural activities and field burning of crop residues are common practices. The relative contributions of biomass burning smoke to organic carbon in PM10 were estimated from levoglucosan data to be on average 7.0 and 14% at daytime and nighttime, respectively, with maxima of 9.7 and 32% during the episodic transport events, indicating that biomass and biofuel burning activities in the rural parts of the Pearl River Delta and neighboring regions could have a significant impact on ambient urban aerosol levels.  相似文献   
895.
The chemistry–aerosol–cloud–radiation–climate feedbacks are simulated using WRF/Chem over the continental U.S. in January and July 2001. Aerosols can reduce incoming solar radiation by up to ?9% in January and ?16% in July and 2-m temperatures by up to 0.16 °C in January and 0.37 °C in July over most of the continental U.S. The NO2 photolysis rates decrease in July by up to ?8% over the central and eastern U.S. where aerosol concentrations are high but increase by up to 7% over the western U.S. in July and up to 13% over the entire domain in January. Planetary boundary layer (PBL) height reduces by up to ?23% in January and ?24% in July. Temperatures and wind speeds in July in big cities such as Atlanta and New York City reduce at/near surface but increase at higher altitudes. The changes in PBL height, temperatures, and wind speed indicate a more stable atmospheric stability of the PBL and further exacerbate air pollution over areas where air pollution is already severe. Aerosols can increase cloud optical depths in big cities in July, and can lead to 500–5000 cm?3 cloud condensation nuclei (CCN) at a supersaturation of 1% over most land areas and 10–500 cm?3 CCN over ocean in both months with higher values over most areas in July than in January, particularly in the eastern U.S. The total column cloud droplet number concentrations are up to 4.9 × 106 cm?2 in January and up to 11.8 × 106 cm?2 in July, with higher values over regions with high CCN concentrations and sufficient cloud coverage. Aerosols can reduce daily precipitation by up to 1.1 mm day?1 in January and 19.4 mm day?1 in July thus the wet removal rates over most of the land areas due to the formation of small CCNs, but they can increase precipitation over regions with the formation of large/giant CCN. These results indicate potential importance of the aerosol feedbacks and an urgent need for their accurate representations in current atmospheric models to reduce uncertainties associated with climate change predictions.  相似文献   
896.
Sulphidic mine tailings characterised by high concentrations of heavy metals (Pb 3532?±?97?mg/kg, Zn 8450?±?154?mg/kg, Cu 239?±?18?mg/kg and Cd 14.1?±?0.3?mg/kg) and abundant carbonate (17%) were subjected to eight lab-scale electrodialytic remediation (EDR) experiments to investigate the influence of current density, treatment time and particle size on removal efficiency. Pb and Cu removal improved when increasing current density, while Zn and Cd removal did not. In contrast Zn and Cd removal improved by grinding the tailings, while Pb and Cu removal did not. At the highest current density (1.2?mA/cm2), 94%, 75%, 71% and 67% removal of Pb, Zn, Cu and Cd could be achieved, respectively, on grinded tailings in 28 days. Sequential chemical extraction made before and after EDR revealed larger oxidisable fractions of Zn, Cu and Cd, representing large fractions of sulphides, which was likely to be the main barrier to be removed as efficiently as Pb. This was in accordance with acid/base extraction tests in which Pb showed high solubility at both high and low pH (up to 65% and 86% of extraction, respectively), while considerable extraction of Zn (55%) happened only at low pH; and very limited extraction (<20%) of Cu and Cd occurred at any pH.  相似文献   
897.

Halogenated biphenyls are worldwide persistent pollutants of great environmental concern. In particular, polychlorinated biphenyls and polybrominated biphenyls have been globally used for industrial purposes until they were found highly toxic, mutagenic and carcinogenic to humans. Therefore, ecological strategies to remove halogenated biphenyls, such as enzyme-catalyzed degradation, are needed. Here, we studied the effect of substitution of F, Cl, Br or I at the 4,4′-positions of 2,3-dihydro-2,3-dihydroxybiphenyl-2,3-dehydrogenase (BphB) on the degradation of halogenated biphenyls by quantum and molecular mechanics. Results show that Boltzmann-weighted average degradation barriers of substituted BphB are all lower than the unsubstituted biphenyl, except for chlorinated biphenyl. The roles of residues nearby the active site, e.g., isoleucine89, asparagine115, serine142, asparagine143, proline184, methionine187 and threonine189, were also investigated.

  相似文献   
898.
Wang  Shengli  Yan  Linlin  Guan  Xiaohui  Jia  Yanping  Song  Lianfa  Zhang  Haifeng 《Environmental Chemistry Letters》2019,17(4):1831-1837
Environmental Chemistry Letters - Hydroxyl radicals are commonly produced either by metal activation or by using external energy. However, the application of these methods is limited by low working...  相似文献   
899.
CNTs were incorporated into MIL-88B-Fe to get a new Fenton-like catalyst (C@M). Fe(II) was introduced in C@M to get a fast initiation of Fenton-like reaction. Fe(II) content in C@M was related with oxygen-containing functional groups on CNTs. C@M shows efficient catalytic degradation of pollutants over a wide pH range. Iron-based metal organic frameworks have been verified to be efficient heterogeneous Fenton catalysts due to their open pore channels and highly uniform distribution of metallic centers. In these catalysts, however, the iron element is mainly in the form of Fe(III), which results in a process required to reduce Fe(III) to Fe(II) to initiate Fenton reaction. To address this problem, carbon nanotubes (CNTs) with electron-rich oxygen-functional groups on the surface were incorporated into the metal organic frameworks (MIL-88B-Fe) to improve Fe(II) content for an enhanced Fenton-like performance. The prepared CNT@MIL-88B-Fe (C@M) showed much stronger catalytic ability toward H2O2 than MIL-88B-Fe. The pseudo-first-order kinetic constant for phenol degradation by C@M (0.32 min–1) was about 7 times that of MIL-88B-Fe, and even higher than or comparable to the values of reported heterogeneous Fenton-like catalysts. Moreover, the Fenton-like system could effectively degrade various kinds of refractory organic pollutants and exhibited excellent catalytic activity over a wide pH range (4–9). XPS analysis confirmed that Fe(II) content of the catalyst gradually increased with CNT loadings. Electron spin resonance analysis showed that the signal intensity (•OH) of C@M was much higher than MIL-88B-Fe, which was consistent with the degradation efficiency of pollutants. Furthermore, the Fe(II) content of the catalyst gradually increased along with the oxygen-functional group content of CNTs. The result demonstrated that oxygen-containing functional groups of CNTs have a significant impact on the enhanced catalytic performance of C@M. This study provides a new insight to enhance Fenton reaction by using nanocarbon materials.  相似文献   
900.
PFRs were produced on biochar during Cr(VI) decontamination. PFRs formation on biochar was owing to the oxidization of phenolic-OH by Cr(VI). Appearance of excessive oxidant led to the consumption of PFRs on biochar. Biochar charred at high temperature possessed great performance to Cr(VI) removal. This study investigated the facilitation of Cr(VI) decontamination to the formation of persistent free radicals (PFRs) on rice husk derived biochar. It was found that Cr(VI) remediation by biochar facilitated the production of PFRs, which increased with the concentration of treated Cr(VI). However, excessive Cr(VI) would induce their decay. Biochar with high pyrolysis temperature possessed great performance to Cr(VI) removal, which was mainly originated from its reduction by biochar from Inductively Coupled Plasma Optical Emission Spectroscopy and X-ray Photoelectron Spectroscopy. And the corresponding generation of PFRs on biochar was primarily ascribed to the oxidization of phenolic hydroxyl groups by Cr(VI) from Fourier Transform Infrared Spectroscopy analysis, which was further verified by the H2O2 treatment experiments. The findings of this study will help to illustrate the transformation of reactive functional groups on biochar and provide a new insight into the role of biochar in environmental remediation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号