首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24092篇
  免费   267篇
  国内免费   133篇
安全科学   561篇
废物处理   1119篇
环保管理   2972篇
综合类   3974篇
基础理论   6547篇
环境理论   14篇
污染及防治   6508篇
评价与监测   1596篇
社会与环境   1061篇
灾害及防治   140篇
  2022年   238篇
  2021年   250篇
  2019年   176篇
  2018年   369篇
  2017年   348篇
  2016年   579篇
  2015年   399篇
  2014年   669篇
  2013年   1938篇
  2012年   795篇
  2011年   1030篇
  2010年   830篇
  2009年   777篇
  2008年   1024篇
  2007年   1068篇
  2006年   939篇
  2005年   781篇
  2004年   742篇
  2003年   717篇
  2002年   686篇
  2001年   807篇
  2000年   607篇
  1999年   357篇
  1998年   271篇
  1997年   287篇
  1996年   284篇
  1995年   350篇
  1994年   317篇
  1993年   293篇
  1992年   284篇
  1991年   284篇
  1990年   303篇
  1989年   284篇
  1988年   253篇
  1987年   244篇
  1986年   224篇
  1985年   206篇
  1984年   255篇
  1983年   212篇
  1982年   276篇
  1981年   219篇
  1980年   185篇
  1979年   204篇
  1978年   184篇
  1977年   155篇
  1975年   148篇
  1974年   160篇
  1973年   162篇
  1972年   149篇
  1971年   148篇
排序方式: 共有10000条查询结果,搜索用时 437 毫秒
831.
A pilot-scale pyrolysis process was carried out for the treatment of a mixture of two types of waste, sewage sludge and cattle manure, comparing the results with others obtained under laboratory conditions (semi-pilot scale). The aim of this study was to obtain the energetic valorization of the products. Owing to the specific characteristics of the plant, two products were obtained from the process: gas and carbonized solid. As no liquid fraction was obtained, the gas fraction is a greater percentage made up of both condensable and non-condensable compounds, which were obtained separately at the laboratory scale. The pilot plant was designed so that the gases produced by thermolysis were burnt continuously in a combustion chamber, while the carbonized fraction was fed in batches for co-combustion. To determine composition and combustion ability, the gas and solid products from the pilot process were characterized by chromatographic analysis of the gaseous fraction and chemical analysis and programmed-temperature combustion of the carbonized solid. The composition of the combustion gases, rich in light hydrocarbons, and the carbon present in the carbonized fraction enable the energetic valorization of these products. The combustion gases were subjected to a cleaning process and their composition analysed twice: before and after the gas cleaning treatment. The study led to a positive assessment of the possible use of the process products as fuel, provided that the combustion gases are treated. As most of the sulphur and chlorine from the original waste are mainly concentrated in the solid fraction, the use of char as a fuel will depend on the effectiveness of clean-up techniques for combustion gases. During gas cleansing, neutralizing with sodium bicarbonate proved effective, especially for the acidic compounds HCl, HF and SO(2).  相似文献   
832.
Review of state of the art methods for measuring water in landfills   总被引:1,自引:0,他引:1  
In recent years several types of sensors and measurement techniques have been developed for measuring the moisture content, water saturation, or the volumetric water content of landfilled wastes. In this work, we review several of the most promising techniques. The basic principles behind each technique are discussed and field applications of the techniques are presented, including cost estimates. For several sensors, previously unpublished data are given. Neutron probes, electrical resistivity (impedance) sensors, time domain reflectometry (TDR) sensors, and the partitioning gas tracer technique (PGTT) were field tested with results compared to gravimetric measurements or estimates of the volumetric water content or moisture content. Neutron probes were not able to accurately measure the volumetric water content, but could track changes in moisture conditions. Electrical resistivity and TDR sensors tended to provide biased estimates, with instrument-determined moisture contents larger than independent estimates. While the PGTT resulted in relatively accurate measurements, electrical resistivity and TDR sensors provide more rapid results and are better suited for tracking infiltration fronts. Fiber optic sensors and electrical resistivity tomography hold promise for measuring water distributions in situ, particularly during infiltration events, but have not been tested with independent measurements to quantify their accuracy. Additional work is recommended to advance the development of some of these instruments and to acquire an improved understanding of liquid movement in landfills by application of the most promising techniques in the field.  相似文献   
833.
With the advent of recently promulgated Government regulations on plastics in Mauritius, a study was initiated to examine the biodegradability of two different types of plastic, namely Willow Ridge Plastics - PDQ-H additive (Plastic A) and Ecosafe Plastic - TDPA additive (Plastic B) under controlled and natural composting environments. The results obtained from the controlled composting environment showed that the cumulative carbon dioxide evolution for Plastic A was much higher than that for Plastic B. Plastic A therefore showed a higher level of biodegradation in terms of CO2 evolution than Plastic B. However, from the regression analysis, it was found that the level of CO2 varying with time fitted the sigmoid type curves with very high correlation coefficients (R2 values: 0.9928, 0.9921 and 0.9816, for reference material, inoculum and Plastic A, respectively). The corresponding F-values obtained from the ANOVA analysis together with significance levels of p<0.05 indicated that the three treatments analysed in the biodegradability experiment were significant. The other experiment was undertaken to observe any physical change of Plastics A and B as compared to a reference plastic, namely, compostable plastic bag (Mater-Bi product-Plastic C), when exposed to a natural composting environment. Thermophilic temperatures were obtained for about 3-5 days of composting and the moisture content was in the range of 60-80% throughout the degradation process. It was observed that after 55 days of composting, Plastic C degraded completely while Plastic A and Plastic B did not undergo any significant degradation. It can be concluded that naturally based plastic made of starch would degrade completely in a time frame of 60 days, whereas plastics with biodegradable additive would require a longer time.  相似文献   
834.
In order to reduce the environmental impact due to land disposal of oil fly ash from power plants and to valorize this waste material, the removal of vanadium was investigated using leaching processes (acidic and alkaline treatments), followed by a second step of metal recovery from leachates involving either solvent extraction or selective precipitation. Despite a lower leaching efficiency (compared to sulfuric acid), sodium hydroxide was selected for vanadium leaching since it is more selective for vanadium (versus other transition metals). Precipitation was preferred to solvent extraction for the second step in the treatment since: (a) it is more selective; enabling complete recovery of vanadate from the leachate in the form of pure ammonium vanadate; and (b) stripping of the loaded organic phase (in the solvent extraction process) was not efficient. Precipitation was performed in a two-step procedure: (a) aluminum was first precipitated at pH 8; (b) then ammonium chloride was added at pH 5 to bring about vanadium precipitation.  相似文献   
835.
In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane, and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions.  相似文献   
836.
The sheer amount of disposable bottles being produced nowadays makes it imperative to identify alternative procedures for recycling them since they are non-biodegradable. This paper describes an innovative use of consumed plastic bottle waste as sand-substitution aggregate within composite materials for building application. Particularly, bottles made of polyethylene terephthalate (PET) have been used as partial and complete substitutes for sand in concrete composites. Various volume fractions of sand varying from 2% to 100% were substituted by the same volume of granulated plastic, and various sizes of PET aggregates were used. The bulk density and mechanical characteristics of the composites produced were evaluated. To study the relationship between mechanical properties and composite microstructure, scanning electron microscopy technique was employed. The results presented show that substituting sand at a level below 50% by volume with granulated PET, whose upper granular limit equals 5mm, affects neither the compressive strength nor the flexural strength of composites. This study demonstrates that plastic bottles shredded into small PET particles may be used successfully as sand-substitution aggregates in cementitious concrete composites. These new composites would appear to offer an attractive low-cost material with consistent properties; moreover, they would help in resolving some of the solid waste problems created by plastics production and in saving energy.  相似文献   
837.
Otero M  Gómez X  García AI  Morán A 《Chemosphere》2007,69(11):1740-1750
Combustion of urban sewage sludge together with coal in existing infrastructures may be a sustainable management option energetically interesting for these materials, usually considered wastes. Thermogravimetric analysis was used to study the combustion of a semianthracite coal and the modifications undergone when adding a small percentage (2%, 5%, 10%) of sewage sludge. Both Differential Scanning Calorimetric analysis and Differential Thermogravimetry burning profiles showed differences between coal and sewage sludge combustion. However, the effects of adding a percentage of sewage sludge equal or smaller than 10% was hardly noticeable in terms of heat release and weight loss during the coal combustion. This was further proved by non-isothermal kinetic analysis, which was used to evaluate the Arrhenius activation energy corresponding to the co-combustion of the blends. This work shows that thermogravimetric analysis may be used as an easy rapid tool to asses the co-combustion of sewage sludge together with coal.  相似文献   
838.
This study examines the feasibility of coupling a Catalytic Wet Air Oxidation (CWAO), with activated carbon (AC) as catalyst, and an aerobic biological treatment to treat a high-strength o-cresol wastewater. Two goals are pursued: (a) To determine the effect of the main AC/CWAO intermediates on the activated sludge of a municipal WasteWater Treatment Plant (WWTP) and (b) To demonstrate the feasibility of coupling the AC/CWAO effluent as a part of the influent of a municipal WWTP. In a previous study, a high-strength o-cresol wastewater was treated by AC/CWAO aiming to establish the distribution of intermediates and the biodegradability enhancement. In this work, the biodegradability, toxicity and inhibition of the most relevant intermediates detected in the AC/CWAO effluent were determined by respirometry. Also, the results of a pilot scale municipal WWTP study for an integrated AC/CWAO-aerobic biological treatment of this effluent are presented. The biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) of main AC/CWAO intermediates allowed the classification of the intermediates into readily biodegradable, inert or toxic/inhibitory compounds. This detailed study, allowed to understand the biodegradability enhancement exhibited by an AC/CWAO effluent and to achieve a successful strategy for coupling the AC/CWAO step with an aerobic biological treatment for a high-strength o-cresol wastewater. Using 30%, as COD, of AC/CWAO effluent in the inlet to the pilot scale WWTP, the integrated AC/CWAO-biological treatment achieved a 98% of total COD removal and, particularly, a 91% of AC/CWAO effluent COD removal without any undesirable effect on the biomass.  相似文献   
839.
This study assesses the status of Sacca di Goro coastal lagoon (Northern Adriatic, Italy) with respect to watershed pollution. Because 80% of its watershed is devoted to agriculture, plant protection products and their metabolites were found in the water column, sediments (the upper 0-15 cm layer), macroalgae (Ulva rigida) and clams (Tapes philippinarum). Five seasonal sampling campaigns were performed from May 2004 to April 2005 and concentrations measured in five stations in the lagoon and six in the watershed. Relatively high concentrations of the s-triazine - terbuthylazine -, urea herbicides - diuron - and alachlor were detected through the year mainly at stations directly influenced by the Po di Volano inflow. The concentrations of products in use follow a clear seasonal pattern with spring peaks. This pattern is also visible in the sediments as well as in biota. Among metabolites, hydroxylated compounds prevailed, often with concentrations greater than those of the parent compounds. For the most part of the year, the concentrations in biota were close to detection limits, with concentration peaks in spring.  相似文献   
840.
Toxicity of textile wastewaters (untreated and treated) and their ingredient chemicals was quantified in terms of their chemical characteristics, fish (Gambusia affinis) mortality and end point growth responses of duckweed (Lemna aequinoctialis) in short-term bioassays. Other parameters of fish bioassay were erythrocyte morphology and its counts. Despite of a definite correlation between data of biological tests (LC/EC(50) values) with that of chemical tests, biological tests were found to be relatively more sensitive to both wastewaters and ingredient chemicals. Amongst all the examined parameters of test organisms, fish RBCs (morphology and counts) sensitivity to pollutants in the wastewaters was usually maximum and therefore, their study should be included in the routine fish bioassay. Other advantage of biological test such as on Lemna is even detection of eutrophic potential of wastewaters, as noted at their higher dilutions. The ingredient chemicals (major) contributing maximum toxicity to textile dye wastewater were, acids (HCl and H(2)SO(4)), alkali (Na(2)O SiO(2)), salt (NaNO(2)) and heavy metal (Cu), whereas dyes (4) were relatively less toxic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号