首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   7篇
  国内免费   5篇
安全科学   4篇
废物处理   16篇
环保管理   27篇
综合类   19篇
基础理论   42篇
污染及防治   67篇
评价与监测   37篇
社会与环境   21篇
灾害及防治   3篇
  2023年   4篇
  2022年   15篇
  2021年   15篇
  2020年   3篇
  2019年   8篇
  2018年   8篇
  2017年   7篇
  2016年   12篇
  2015年   6篇
  2014年   10篇
  2013年   36篇
  2012年   6篇
  2011年   16篇
  2010年   20篇
  2009年   4篇
  2008年   9篇
  2007年   5篇
  2006年   7篇
  2005年   9篇
  2004年   5篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1994年   4篇
  1992年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1979年   1篇
  1967年   1篇
  1963年   3篇
  1962年   1篇
排序方式: 共有236条查询结果,搜索用时 0 毫秒
81.
Soil organic matter not only affects sustainability of agricultural ecosystems, but also extremely important in maintaining overall quality of environment as soil contains a significant part of global carbon stock. Hence, we attempted to assess the influence of different tillage and nutrient management practices on various stabilized and active soil organic carbon pools, and their contribution to the extractable nitrogen phosphorus and sulfur. Our study confined to the assessment of impact of agricultural management practices on the soil organic carbon pools and extractable nutrients under three important cropping systems, viz. soybean–wheat, maize–wheat, and rice–wheat. Results indicated that there was marginal improvement in Walkley and Black content in soil under integrated and organic nutrient management treatments in soybean–wheat, maize–wheat, and rice–wheat after completion of four cropping cycles. Improvement in stabilized pools of soil organic carbon (SOC) was not proportional to the applied amount of organic manures. While, labile pools of SOC were increased with the increase in amount of added manures. Apparently, green manure (Sesbania) was more effective in enhancing the lability of SOC as compared to farmyard manure and crop residues. The KMnO4-oxidizable SOC proved to be more sensitive and consistent as an index of labile pool of SOC compared to microbial biomass carbon. Under different cropping sequences, labile fractions of soil organic carbon exerted consistent positive effect on the extractable nitrogen, phosphorus, and sulfur in soil.  相似文献   
82.
This paper describes the development and application of the Visibility and Haze in the Western Atmosphere (VISHWA) model to understand the source-receptor relationships that govern chemical species relevant to visibility degradation in the western United States. The model was developed as part of a project referred to as Visibility Assessment for Regional Emission Distributions (VARED), the objective of which is to estimate the contributions of various geographical regions, compounds, and emission

sources to light scattering and absorption by particles on the Colorado Plateau.

The VISHWA model is a modified version of a comprehensive Eulerian model, known as the Acid Deposition and Oxidant Model.1 The modifications were designed to obtain the computational efficiency required to simulate a one-year period at about 1/25th of real time, and at the same time incorporate mechanistic features relevant to realistic modeling of the fate and transport of visibility degrading species. The modifications included use of a condensed chemical mechanism; incorporation of reactions to simulate the formation of secondary organic particles; and use of a semi-Lagrangian advection scheme to preserve concentration peaks during advection.

The model was evaluated with 1992 air quality data from Project MOHAVE (Measurements of Haze and Visual Effects) intensive experiments. An important conclusion of this evaluation is that aqueous-phase oxidation of SO2 to sulfate in nonprecipitating clouds makes a significant contribution to observed sulfate levels during winter as well as summer. Model estimates of ambient sulfate

for the winter intensive were within a factor of 2 of the observations for 75% of the values. The corresponding statistic for the summer intensive was 90%. Model estimates of carbon were within a factor of 2 of the limited set of observations.  相似文献   
83.
Soil–Water–Atmosphere–Plant (SWAP) version 2.0 was evaluated for its capability to simulate crop growth and salinity profiles at Agra (India) located in a semi-arid region having deep water table and monsoon climate. The data of 12 conjunctive use treatment combinations simulating cyclic and mixing modes of fresh and saline water for wheat were used to calibrate and validate the model. Absolute deviations between the SWAP simulated and observed relative yields during calibration ranged from 2.5 to 2.9 %. A close agreement in the trend and values of measured and simulated soil salinity profiles was observed. Scenario building simulations carried out with the validated SWAP revealed that the maximum crop yields varied from 97 to 99 % with the best available water (EC 3.6 dS m?1) while the minimum ranged from 65 to 79 % in the treatment with all saline water. Other than this, the relative yield varied from 80 to 98 % in 10 other cyclic and mixing mode treatments. It was established that notwithstanding the seasonal build-up of salts due to saline water use, there would be no long-term build-up of salts as leaching during the monsoon season would render the soil profile salt free at the time of sowing of rabi (winter) crops. Thus, short-term field observations could be used in conjunction with SWAP to show that there seems to be an assured long-term sustainability when saline water is used in conjunctive mode with fresh water in monsoon climatic conditions with deep water table. These results are in conformity with the observation that many farmers in India are using saline and fresh water in conjunctive mode on a long-term basis.  相似文献   
84.
Pseudomonas (PI2) capable of degrading pyridine was isolated from the mixed population of the activated sludge unit which was being used for treating complex effluents, the strain was characterized. Aerobic degradation of pyridine was studied with the isolated strain and the growth parameters were evaluated. Pyridine degradation was further conformed by chromatography (HPLC) analysis. The process parameters like biomass growth and dissolved oxygen consumption were monitored during pyridine degradation. In order to conform with the plasmid capability to degrade pyridine, the requisite plasmid was isolated and transferred to DH 5alpha Escherichia coli. The subsequent biodegradation studies revealed the ability of the transformed plasmid capability to degrade the pyridine.  相似文献   
85.
This paper analyzes the effect of exogenous urea in increased concentration gradient (0, 100, 500 and 1,000 mg L?1) on photosynthetic pigments (measured spectrophotometrically), uptake of 14CO2 (using radioisotope), and urease activity (by measuring ammonia with Nessler’s reagent) in leaves of Elodea densa Planch. We have observed that low concentration of urea (100 mg L?1) stimulates the accumulation of photosynthetic pigments and intensifies photosynthesis in E. densa, whereas high concentration (1,000 mg L?1) suppresses these processes. Urease activity increased by approximately 2.7 and 8 fold when exogenous urea concentrations were 100 and 500 mg L?1, respectively. However, exogenous urea in high concentration (1,000 mg L?1) decreased urease activity by 1.5 fold compared to the control. The necessity of mitigating urea and other nitrogen-containing compounds (NH3 from urea) in water bodies has been discussed with emphasis on the potential for phytoremediation of urea using common water weed viz. E. densa.  相似文献   
86.
Environmental Science and Pollution Research - Highly bioavailable plant phospholipid complex that can reverse aluminum maltolate (AlM)–induced toxicity is not yet reported. Hence, the...  相似文献   
87.
Environmental Science and Pollution Research - In this study, marine microalgae were isolated from the Bay of Bengal, and their biodiesel production potential was investigated. Five different...  相似文献   
88.
The Syabru-Bensi hydrothermal zone, Langtang region (Nepal), is characterized by high radon-222 and CO2 discharge. Seasonal variations of gas fluxes were studied on a reference transect in a newly discovered gas discharge zone. Radon-222 and CO2 fluxes were measured with the accumulation chamber technique, coupled with the scintillation flask method for radon. In the reference transect, fluxes reach exceptional mean values, as high as 8700 ± 1500 g m−2 d−1 for CO2 and 3400 ± 100 × 10−3 Bq m−2 s−1 for radon. Gases fluxes were measured in September 2007 during the monsoon and during the dry winter season, in December 2007 to January 2008 and in December 2008 to January 2009. Contrary to expectations, radon and its carrier gas fluxes were similar during both seasons. The integrated flux along this transect was approximately the same for radon, with a small increase of 11 ± 4% during the wet season, whereas it was reduced by 38 ± 5% during the monsoon for CO2. In order to account for the persistence of the high gas emissions during monsoon, watering experiments have been performed at selected radon measurement points. After watering, radon flux decreased within 5 min by a factor of 2–7 depending on the point. Subsequently, it returned to its original value, firstly, by an initial partial recovery within 3–4 h, followed by a slow relaxation, lasting around 10 h and possibly superimposed by diurnal variations. Monsoon, in this part of the Himalayas, proceeds generally by brutal rainfall events separated by two- or three-day lapses. Thus, the recovery ability shown in the watering experiments accounts for the observed long-term persistence of gas discharge. This persistence is an important asset for long-term monitoring, for example to study possible temporal variations associated with stress accumulation and release.  相似文献   
89.
Jatropha curcas L. (Jatropha) is an important multipurpose tree valued for oil. In India, plans are underway to bring substantial area under this crop for meeting the biofuel requirements of the country. A study was conducted to develop allometric relationships in Jatropha to predict various biomass-related components (above ground and below ground) using easily measurable attributes, viz. collar diameter, tree height, number of branches, crown diameter, and crown depth. Further, it was aimed to establish the reliability of these relationships using an independent dataset obtained from varied management situations. Destructive sampling was carried out during the rainy season of 2011, when Jatropha plants were eight years old. Highly significant allometric relationships (F-values significant at 1% level) were obtained while predicting various biomass components (above, below, and total) using easily measurable attributes with R2 values ranging from 0.89 to 0.98. Of all the predictors, collar diameter exhibited a highly significant relationship with total dry biomass per plant (R2 = 0.97). The allometric relationships developed were validated with an independent dataset. The allometric relationships developed would serve as valuable tools for estimating total dry biomass production and carbon sequestration with reasonable accuracy in Jatropha systems, as they are proposed to be taken up in substantial area in the years to come.  相似文献   
90.
This study simulated crop and water yields in the Missouri River Basin (MRB; 1,371,000 km2), one of the largest river basins in the United States, using the Soil and Water Assessment Tool (SWAT) at a fine resolution of 12‐digit Hydrological Unit Codes (HUCs) using the regionalization calibration approach. Very few studies have simulated the entire MRB, and those that have developed were at a coarser resolution of 8‐digit HUCs and were minimally calibrated. The MRB was first divided into three subbasins and was further divided into eleven regions. A “head watershed” was selected in each region and was calibrated for crop and water yields. The parameters from the calibrated head watershed were extrapolated to other subwatersheds in the region to complete comprehensive spatial calibration. The simulated crop yields at the head watersheds were in close agreement with observed crop yields. Spatial validation of the aggregated crop yields resulted in reasonable predictions for all crops except dryland corn in a few regions. Simulated and observed water yields in head watersheds and also in the validation locations were in close agreement in naturalized streams and poor agreement in streams with high groundwater‐surface water interactions and/or reservoirs found upstream of the gauges. Overall, the SWAT model was able to reasonably capture the hydrological and crop growth dynamics occurring in the basin despite some limitations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号