首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   0篇
  国内免费   4篇
废物处理   5篇
环保管理   4篇
综合类   9篇
基础理论   27篇
污染及防治   54篇
评价与监测   20篇
社会与环境   10篇
灾害及防治   1篇
  2023年   8篇
  2022年   22篇
  2021年   10篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   12篇
  2016年   5篇
  2015年   8篇
  2014年   3篇
  2013年   12篇
  2012年   3篇
  2011年   8篇
  2010年   5篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2004年   3篇
  2002年   3篇
  2001年   1篇
  1998年   2篇
  1995年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有130条查询结果,搜索用时 15 毫秒
91.
Recent research attention is shifting towards the use of bioactive antimicrobial and/or antioxidant packaging materials and their fabrication with non-toxic techniques. The process of melt electrospinning produce fibers from polymer melt without any solution hence environmentally friendly because use of toxic solvents can be avoided. The objectives of this study were fabrication of biodegradable polymeric microfibrous structure using melt electrospinning and characterization of the effect of plant based natural extract on fabricated structure. We found that incorporation of this structure with natural extract provide sufficient support for bioactive compounds without changing thermal stability, physical properties and amorphous phase and also increase the antimicrobial efficacy. Moreover, homogeneously dispersion and good interaction of polymer and natural plant based extract demonstrating the potential of such polymer blend as a bioactive antimicrobial material for packaging industry including especially food and healthcare.  相似文献   
92.
Biological treatment of landfill leachate is challenging due to the presence of complex compounds. Here, we treated an old landfill leachate using a membrane bioreactor under the following conditions: 24 h for hydraulic retention, 65 days of sludge retention and an average organic load rate of 1.71 ± 0.16 g/L/day. We observed a high removal of ammonia, phosphorous and some metals. However, removal of organic carbon was incomplete. Despite a major removal of suspended solids, hydrophobic and volatile hydrophilic compounds, high concentration of fulvic acid and hydrophilic contaminants was found in the effluent. Overally, we demonstrate that the presence of humic substances in the effluent is associated with the detection of arsenic, copper and chromium and di(2-ethylhexyl) phthalate.  相似文献   
93.
Air pollution due to vehicular emissions has become one of the most serious problems in the whole world and has resulted in huge threat to both the environment and the health of living organisms (plants, humans, animals, microorganisms). Plants growing along the roadsides get affected at the maximum as they are the primary recipients to different air pollutants and show varied levels of tolerance and sensitivity. Taking this into account, the present work was based on assessment of seasonal variation in air pollution tolerance index (APTI) and anticipated performance index (API) of four roadside plants, namely, Alstonia scholaris, Nerium oleander, Tabernaemontana coronaria, and Thevetia peruviana belonging to family Apocynaceae. APTI was calculated by the determination of four important biochemical parameters, viz., pH, relative water content (RWC), total chlorophyll (TChl), and ascorbic acid (AsA) content of leaves. The leaf samples were collected from plants growing at seven different sites of Amritsar (Punjab), India, for pre-monsoon and post-monsoon seasons. Highest APTI (82.14) was reported in N. oleander during the pre-monsoon season while the lowest was recorded in T. coronaria (18.59) in the post-monsoon season. On the basis of API score, A. scholaris was anticipated to be an excellent performer during the pre-monsoon and post-monsoon seasons followed by N. oleander, T. coronaria, and T. peruviana. Linear regression analysis and Pearson’s correlation coefficient depicted significant positive correlation between APTI and ascorbic acid content during the pre-monsoon and post-monsoon seasons.  相似文献   
94.
ABSTRACT

In the era of developing technologies, there is always been a crisis of rising demands of energy. There is no skepticism that a lot of energy is being produced every hour for almost each and every field, but still an exploration is needed to come up with new and viable options for energy creation. The same is the objective of this paper which proposes the use of waste biomaterials in association with organic and inorganic materials as a source of energy to power up small electronic devices. In this research egg shell membrane (ESM)-based triboelectric nanogenerator (TENG) is proposed in combination with calotropis (Calo), cellulose from fruit of Bombax Ceiba (BOM), cellulose in form of tissue paper (TISU), dog hair (DH), polytetrafluoroethylene (PTFE), aluminum (Al), and copper (Cu). ESM is eco-friendly waste food by-product and available in abundance. Characterization of ESM is done by scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), and Fourier transform infrared spectrophotometer (FTIR). The proposed ESM-PTFE-based TENG power up 462 green LEDs (462 × 2 V = 924 V ~ 1 kV) without rectifier and produced up to 7.61 µJ energy with 4.7 µF capacitor at 200 tapings. All the proposed ESM-based TENG combinations generate sufficient voltage to turn ON the wrist watch. This green-energy-based TENG has potential application in various fields especially related to medical devices.  相似文献   
95.
The geochemistry of PM10 filter samples collected at sea during the Scholar Ship Atlantic–Mediterranean 2008 research cruise reveals a constantly changing compositional mix of pollutants into the marine atmosphere. Source apportionment modelling using Positive Matrix Factorization identifies North African desert dust, sea spray, secondary inorganic aerosols, metalliferous carbon, and V–Ni-bearing combustion particles as the main PM10 factors/sources. The least contaminated samples show an upper continental crust composition (UCC)-normalised geochemistry influenced by seawater chemistry, with marked depletions in Rb, Th and the lighter lanthanoid elements, whereas the arrival of desert dust intrusions imposes a more upper crustal signature enriched in “geological” elements such as Si, Al, Ti, Rb, Li and Sc. Superimposed on these natural background aerosol loadings are anthropogenic metal aerosols (e.g. Cu, Zn, Pb, V, and Mn) which allow identification of pollution sources such as fossil fuel combustion, biomass burning, metalliferous industries, and urban–industrial ports. A particularly sensitive tracer is La/Ce, which rises in response to contamination from coastal FCC oil refineries. The Scholar Ship database allows us to recognise seaborne pollution sourced from NW Africa, the Cape Verde and Canary islands, and European cities and industrial complexes, plumes which in extreme cases can produce a downwind deterioration in marine air quality comparable to that seen in many cities, and can persist hundreds of kilometres from land.  相似文献   
96.
Use of recycled plastic in concrete: a review   总被引:4,自引:1,他引:3  
Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.  相似文献   
97.
Open crop stubble burning events were observed in and around Patiala city, India. A ground level study was deliberated to analyze the contribution of wheat (Triticum aestivum) and rice (Oriza sativa) crop stubble burning practices on concentration levels of aerosol, SO2 and NO2 in ambient air at five different sites in and around Patiala city covering agricultural, commercial and residential areas. Aerosols were collected on GMF/A and QMF/A (Whatman) sheets for a 24 h period throughout the year in 2007. Simultaneously, sampling of SO2 and NO2 was conducted and results obtained during stubble burning periods were compared to the non-stubble burning periods. Results clearly pointed out a distinct increase in aerosol, SO2 and NO2 levels during the crop stubble burning periods.  相似文献   
98.
The present study was aimed at characterizing the soil-water resource degradation in the rural areas of Gurgaon and Mewat districts, the two economically contrasting areas in policy zones-II and III of the National Capital Region (NCR), and assessing the impact of the study area's local conditions on the type and extent of resource degradation. This involved generation of detailed spatial information on the land use, cropping pattern, farming practices, soils and surface/ground waters of Gurgaon and Mewat districts through actual resource surveys, standard laboratory methods and GIS/remote sensing techniques. The study showed that in contrast to just 2.54% (in rabi season) to 4.87% (in kharif season) of agricultural lands in Gurgaon district, about 11.77% (in rabi season) to 24.23% (in kharif season) of agricultural lands in Mewat district were irrigated with saline to marginally saline canal water. Further, about 10.69% of agricultural lands in the Gurgaon district and 42.15% of agricultural lands in the Mewat district were drain water irrigated. A large part of this surface water irrigated area, particularly in Nuh (48.7%), Nagina (33.5%), and Punhana (24.1%) blocks of Mewat district, was either waterlogged (7.4% area with 0.05 ppm). In fact, sub-surface drinking waters of some areas around battery and automobile manufacturing units in Gurgaon and Pataudi blocks were associated with exceptionally high (>0.1 ppm) Ni concentrations. In general, the ground waters of waterlogged or potentially waterlogged areas in the rural areas of Mewat were more contaminated than the ground waters in the rural areas of Gurgaon district with deeper (>5 m) water depths.Though Cr concentrations in the surface and sub-surface irrigation waters of both Gurgaon and Mewat districts were far above the maximum permissible limit of 1 ppm, their bio-available soil-Cr concentrations were well within permissible limit. Even bio-available Ni concentrations in agricultural lands of Gurgaon district associated with Ni contaminated sub-surface irrigations were well within desirable limit of 0.20 ppm. This was primarily attributed to the calcareous nature of the soils of the study area. About 35% of Gurgaon district and 59% of Mewat district irrigated with poor quality waters were salt-affected. These waterlogged/potentially waterlogged calcareous-salt affected soils of Mewat district were having acute zinc (Zn) deficiency (<0.6 ppm). Some areas with extremely high iron (Fe: 20-25 ppm) and Mn (10-25 ppm) concentrations were also noticed in the Gurgaon, Nuh and Punhana blocks. Generation of reduced conditions owing to paddy cultivation in areas with 3-3.5 m water depths appeared to be the main cause of such point contaminations. Extensive cadmium (Cd) contamination was also noticed in the waterlogged sodic agricultural lands of Nagina village in Mewat district associated with a large scale scrap automobile and battery business. The study could document the processes and provide spatially accurate information to the managers (e.g., National Capital Region Planning Board) and the concerned citizen groups. It could, in fact, clearly point out that dumping of industrial and domestic wastewaters especially from NCT-Delhi into river Yamuna and, to some extent, from NCT-Delhi re-located hazardous industrial units into Najafgarh drain tributaries at Delhi-Gurgaon boundary, and poor "off-farm" water management practices were the main reasons for extensive (point/non-point source) land-water degradation in Gurgaon and Mewat districts of NCR.  相似文献   
99.
Fog water samples were collected in the months of December and January during 1998–2000 at Agra, India. The samples were analyzed for pH, major anions (F, Cl, SO4 2−, NO3 , HCOO and CH3COO), major cations (Ca2+, Mg2+, Na+ and K+) and NH4 + using ion chromatography, ICP-AES and spectrophotometer methods, respectively. pH of fog water samples ranged between 7.0 and 7.6 with a volume weighted mean of 7.2, indicating its alkaline characteristic. NH4 + contributed 40%, SO4 2− and NO3 accounted for 28%, while Ca2+, Mg2+, Na+ and K+ accounted for 16% of the total ionic concentration. The ratios of Mg2+/Ca2+ and Na+/Ca2+ in fog water indicates that 50–75% of fog water samples correspond to the respective ratios in local soil. Significant correlation between Ca2+, Mg2+, Na+ and K+ suggests their soil origin. The order of neutralization, NH4 + (1.4) > Ca2+ (0.28) > Mg2+ (0.12), indicates that NH4 + is the major neutralizing species. Fog water and atmospheric alkalinity were also computed and were found to be 873 and 903 neqm−3, respectively. Both of these values are higher than values reported from temperate sites and thus indicate that at the present level of pollutants, there is no risk of acid fog problem. The study also shows that the alkaline nature of fog water is due to dissolution of ammonia gas and partly due to interaction of fog water with soil derived aerosols.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号