首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   3篇
安全科学   1篇
废物处理   2篇
环保管理   9篇
综合类   2篇
基础理论   10篇
污染及防治   4篇
评价与监测   3篇
社会与环境   1篇
灾害及防治   2篇
  2023年   1篇
  2021年   1篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2000年   2篇
  1995年   1篇
  1980年   1篇
排序方式: 共有34条查询结果,搜索用时 140 毫秒
11.
Fuzzy Sets and Threatened Species Classification   总被引:1,自引:0,他引:1  
  相似文献   
12.
Global biodiversity indices are used to measure environmental change and progress toward conservation goals, yet few indices have been evaluated comprehensively for their capacity to detect trends of interest, such as declines in threatened species or ecosystem function. Using a structured approach based on decision science, we qualitatively evaluated 9 indices commonly used to track biodiversity at global and regional scales against 5 criteria relating to objectives, design, behavior, incorporation of uncertainty, and constraints (e.g., costs and data availability). Evaluation was based on reference literature for indices available at the time of assessment. We identified 4 key gaps in indices assessed: pathways to achieving goals (means objectives) were not always clear or relevant to desired outcomes (fundamental objectives); index testing and understanding of expected behavior was often lacking; uncertainty was seldom acknowledged or accounted for; and costs of implementation were seldom considered. These gaps may render indices inadequate in certain decision-making contexts and are problematic for indices linked with biodiversity targets and sustainability goals. Ensuring that index objectives are clear and their design is underpinned by a model of relevant processes are crucial in addressing the gaps identified by our assessment. Uptake and productive use of indices will be improved if index performance is tested rigorously and assumptions and uncertainties are clearly communicated to end users. This will increase index accuracy and value in tracking biodiversity change and supporting national and global policy decisions, such as the post-2020 global biodiversity framework of the Convention on Biological Diversity.  相似文献   
13.
This paper aims to measure raw material inputs and waste flows in an Irish city-region in order to analyse (i) whether there was absolute dematerialisation in the particular case study over the period 1992–2002 and (ii) whether material consumption and waste generation were decoupled from economic growth and increases in disposable income over the same period. It was found that the selected material flow indicators showed no evidence of absolute dematerialisation over the given study period, although more recent evidence at the national level suggests that a decline in construction activity and extraction of non-metallic minerals has resulted in an absolute reduction in material consumption and it is likely that this will be mirrored at the system boundary level.It was found that Domestic Material Consumption (DMC) per capita and Direct Material Input (DMI) per capita increased at a faster rate than Domestic Processed Output (DPO) per capita and Direct Material Output (DMO) per capita between 1992 and 2002, which indicates relative decoupling of consumption from waste generation. In addition, it was found that there was relative decoupling of consumption and waste generation from disposable income growth over the study period. Finally, it was found that average DMC and DMI figures for the selected case study were lower than the national averages but broadly similar to results for other city-regions in the European Union (EU). On a methodological note, it was concluded that material flow accounting (MFA) for city-regions in Ireland is constrained due to a lack of disaggregated data for material flows, with the exception of local waste data, and it is recommended that bottom-up analysis should be used to complement disaggregated top-down data.  相似文献   
14.
The ‘build back better’ (BBB) concept signals an opportunity to decrease the vulnerability of communities to future disasters during post‐disaster reconstruction and recovery. The 2009 Victorian bushfires in Australia serve as a case study for this assessment of the application of core BBB principles and their outcomes. The results show that several BBB measures were successfully implemented in Victoria and are relevant for any post‐disaster reconstruction effort. The BBB initiatives taken in Victoria include: land‐use planning determined by hazard risk‐based zoning; enforcement of structural design improvements; facilitated permit procedures; regular consultations with stakeholders; and programmes conducted for social and economic recovery. Lessons from the Victorian recovery urge the avoidance of construction in high‐risk zones; fairness and representativeness in community consultations; adequate support for economic recovery; the advance establishment of recovery frameworks; and empowerment of local councils.  相似文献   
15.
Over the past decade the U.S. Environmental Protection Agency (EPA) and the states have partnered in developing a web-based information sharing initiative that provides state environmental agencies easy access to federal environmental monitoring data and to the environmental data of other states, and gives the EPA access to data from state sources. The Environmental Information Exchange Network (EIEN) has established basic data exchange nodes in each of the states. Using multiple regression analysis we investigate the factors that account for the number and development stage of the data exchanges in which the states participate as of 2009. Overall, we find that administrative factors, especially the EPA’s grant program, are more important than political or environmental conditions. Participation in the exchanges is important not only as a way to reduce costs for data reporting and communication, but also as a precursor to greater eventual interstate environmental collaboration. Though clear evidence of a transition to collaboration is not yet seen here, there are some indications it may emerge in time.  相似文献   
16.
Abstract

The feasibility of using agricultural residual with highly organic matter content ‐ spent mushroom compost (SMC) as adsorption medium for removal of pesticides including carbaryl, carbofuran, and aldicarb with a concentration range of 0–30 mg/L from rinsate was investigated. Bottle‐point method was used to determine adsorption isotherms for single‐pesticide and multi‐pesticides. It was found that SMC might potentially be used for on‐farm treatment of pesticide rinsate. The adsorption capacity of SMC was increased compared to most soils, possibly related to the increased organic matter content. The rapid equilibrium of pesticide solution and SMC was consistent with a physical type of adsorption mechanism. The adsorption of carbamate pesticides on SMC was found to exhibit nonlinear “favorable”; adsorption behavior that could be characterized well by the Freundlich isotherm model. In addition, the multi‐pesticide adsorption tests displayed the characteristics of competitive behavior. The competitive ability of these three pesticides in multi‐components adsorption was in the order carbaryl > carbofuran > aldicarb, which was consistent with the adsorbability of pesticides.  相似文献   
17.
18.
The conversion of natural habitat to urban settlements is a primary driver of biodiversity loss, and species' persistence is threatened by the extent, location, and spatial pattern of development. Urban growth models are widely used to anticipate future development and to inform conservation management, but the source of spatial input to these models may contribute to uncertainty in their predictions. We compared two sources of historic urban maps, used as input for model calibration, to determine how differences in definition and scale of urban extent affect the resulting spatial predictions from a widely used urban growth model for San Diego County, CA under three conservation scenarios. The results showed that rate, extent, and spatial pattern of predicted urban development, and associated habitat loss, may vary substantially depending on the source of input data, regardless of how much land is excluded from development. Although the datasets we compared both represented urban land, different types of land use/land cover included in the definition of urban land and different minimum mapping units contributed to the discrepancies. Varying temporal resolution of the input datasets also contributed to differences in projected rates of development. Differential predicted impacts to vegetation types illustrate how the choice of spatial input data may lead to different conclusions relative to conservation. Although the study cannot reveal whether one dataset is better than another, modelers should carefully consider that geographical reality can be represented differently, and should carefully choose the definition and scale of their data to fit their research objectives.  相似文献   
19.
A key question facing conservation biologists is whether declines in species' distributions are keeping pace with landscape change, or whether current distributions overestimate probabilities of future persistence. We use metapopulations of the marsh fritillary butterfly Euphydryas aurinia in the United Kingdom as a model system to test for extinction debt in a declining species. We derive parameters for a metapopulation model (incidence function model, IFM) using information from a 625-km2 landscape where habitat patch occupancy, colonization, and extinction rates for E. aurinia depend on patch connectivity, area, and quality. We then show that habitat networks in six extant metapopulations in 16-km2 squares were larger, had longer modeled persistence times (using IFM), and higher metapopulation capacity (lambdaM) than six extinct metapopulations. However, there was a > 99% chance that one or more of the six extant metapopulations would go extinct in 100 years in the absence of further habitat loss. For 11 out of 12 networks, minimum areas of habitat needed for 95% persistence of metapopulation simulations after 100 years ranged from 80 to 142 ha (approximately 5-9% of land area), depending on the spatial location of habitat. The area of habitat exceeded the estimated minimum viable metapopulation size (MVM) in only two of the six extant metapopulations, and even then by only 20%. The remaining four extant networks were expected to suffer extinction in 15-126 years. MVM was consistently estimated as approximately 5% of land area based on a sensitivity analysis of IFM parameters and was reduced only marginally (to approximately 4%) by modeling the potential impact of long-distance colonization over wider landscapes. The results suggest a widespread extinction debt among extant metapopulations of a declining species, necessitating conservation management or reserve designation even in apparent strongholds. For threatened species, metapopulation modeling is a potential means to identify landscapes near to extinction thresholds, to which conservation measures can be targeted for the best chance of success.  相似文献   
20.
Traditionally, water quality has been monitored by sampling and lab based analysis. However, there are disadvantages associated with this method, for example, deterioration of samples with time, limited sampling points, limited temporal monitoring. This has provided impetus for the development of sensors which can be deployed from remote locations over extended deployment periods. However, a major limitation of these systems is their vulnerability to biofouling. This review outlines the research that has been carried out on strategies for the protection of marine and riverine sensors against fouling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号