首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   0篇
安全科学   3篇
废物处理   4篇
环保管理   5篇
综合类   8篇
基础理论   22篇
污染及防治   21篇
评价与监测   13篇
社会与环境   9篇
  2023年   1篇
  2022年   1篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2014年   5篇
  2013年   8篇
  2012年   4篇
  2011年   13篇
  2010年   2篇
  2009年   6篇
  2008年   9篇
  2007年   7篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有85条查询结果,搜索用时 31 毫秒
51.
52.
In order to assess the potential impacts posed by products containing engineered nanoparticles, it is essential to generate more data about the release of these particles from products’ life cycle. Although first studies were performed to investigate the release of nanoparticles from use phase, very few data are available on the potential release from recycling or disposal of nano-enhanced products.In this work, we investigated the behavior of TiO2 nanoparticles from incineration of solid paint waste containing these particles. Solid paint debris with and without TiO2 nanoparticles were treated in a lab scale incineration plant at 950 °C (combustion temperature) and in oxidizing atmosphere. The obtained ashes were also vitrified with additives and the release of Ti was finally evaluated by leaching test. From our incineration lab-scale experiment, we did not observe a release of TiO2 nanoparticles into the atmosphere, and Ti was attached to the surface of obtained solid residues (i.e. ashes). The characterization of ashes showed that TiO2 nanoparticles reacted during the incineration to give calcium titanate. Finally, a very low release of Ti was measured, less 1 mg/kg, during the leaching test of ashes vitrified with glass cullet and feldspathic inert. Our work suggests that TiO2 nanoparticles added in paints may undergo to physicochemical transformation during the incineration, and that Ti found in ashes may be strongly immobilized in glass matrix. Since this conclusion is based on lab-scale experiment, further research is required to identify which nanoparticles will be emitted to the environment from a real-word-incineration system of household hazardous waste.  相似文献   
53.
54.
55.
Scleractinian symbiotic corals living in the Ligurian Sea (NW Mediterranean Sea) have experienced warm summers during the last decade, with temperatures rapidly increasing, within a few days, to 3–4°C above the mean value of 24°C. The effect of elevated temperatures on the photosynthetic efficiency of zooxanthellae in symbiosis with temperate corals has not been well investigated. In this study, the corals, Cladocora caespitosa and Oculina patagonica were collected in the Ligurian Sea (44°N, 9°E), maintained during 2 weeks at the mean summer temperature of 24°C and then exposed during 48 h to temperatures of 24 (control), 27, 29 and 32°C. Chlorophyll (chl) fluorescence parameters [F v/F m, electron transport rate (ETR), non-photochemical quenching (NPQ)] were measured using pulse amplitude modulated (PAM) fluorimetry before, during the thermal increase, and after 1 and 7 days of recovery (corals maintained at 24°C). Zooxanthellae showed a broad tolerance to temperature increase, since their density remained unchanged and there was no significant reduction in their maximum quantum yield (F v/F m) or ETR up to 29°C. This temperature corresponded to a 5°C increase compared to the mean summer temperature (24°C) in the Ligurian Sea. At 32°C, there was a significant decrease in chl contents for both corals. This decrease was due to a reduction in the chl/zooxanthellae content. For C. caespitosa, there was also a decrease in ETRmax, not associated with a change in F v/F m or in the non-photochemical quenching (NPQ); for O. patagonica, both ETRmax and F v/F m significantly decreased, and NPQmax showed a significant increase. Damages to the photosystem II appeared to be reversible in both corals, since F v/F m values returned to normal after 1 day at 24°C. Zooxanthellae in symbiosis with the Mediterranean corals investigated can therefore be considered as resistant to short-term increases in temperature, even well above the maximum temperatures experienced by these corals in summer.  相似文献   
56.
Summary Computerized screening of all the positions recorded during a synodic month on 120 individually marked chitons (Acanthopleura gemmata) pinpointed their preferential resting points. Unlike the majority of intertidal chitons so far studied, A. gemmata rests in well-defined homes actively dug in the rock. Homes proved to be not strictly individual and periodically interchangeable. A complex aggressive behaviour was recorded in the field when two animals came in contact at home. When competing for ownership of a resting site rival chitons may suppress their nocturnal feeding activity. Despite its strong home-related territoriality A. gemmata showed no mutual exclusion on the feeding area. The highly specialized resting habits clearly protects A. gemmata from its most important predator, the toad fish Arothron immaculatus. The behaviour of A. gemmata is compared to that of other chitons and gastropods, and the current hypotheses concerning the adaptive value of the homing behaviour in littoral molluscs are discussed.  相似文献   
57.
Ecological modelling has not yet received from basic “hard” sciences, like conventional physics and chemistry, an adequate conceptual support. Mechanistic simulation techniques are very far from achieving a satisfactory understanding of ecosystem dynamics.  相似文献   
58.
59.
In this work, ash generated by the combustion of wood in a central heating plant was used to remove and permanently store by accelerated carbonation CO2 contained in a gas mixture simulating biogas. The process was studied as an alternative treatment to the ones currently available on the market for biogas upgrading. The process was investigated at laboratory scale by setting up a facility for directly contacting the wood ash and the synthetic biogas in a fixed bed reactor. The process was able to completely remove CO2 during its initial phase. After about 30 h, CO2 started to appear again in the outlet stream and its concentration rapidly increased. The specific CO2 uptake achieved in solid carbonate form was of about 200 g/kg of dry wood ash. This value is an order of magnitude higher than the ones found for waste incineration bottom ash carrying out similar experiments. The difference was ascribed to the physicochemical properties of the ash, characterized by a fine particle size (d50 <?0.2 mm) and high content of reactive phases with CO2 (e.g., Ca hydroxides). The leaching behavior of the wood ash was examined before and after the accelerated carbonation process showing that the release of several elements was lower after the treatment; Ba leaching in particular decreased by over two orders of magnitude. However, the release of the critical elements for the management of this type of residues (especially Cr and sulfates) appeared not to be significantly affected, while V leaching increased.  相似文献   
60.
Stomatal ozone uptake, determined with the Jarvis' approach, was related to photosynthetic efficiency assessed by chlorophyll fluorescence and reflectance measurements in open-top chamber experiments on Phaseolus vulgaris. The effects of O3 exposure were also evaluated in terms of visible and microscopical leaf injury and plant productivity. Results showed that microscopical leaf symptoms, assessed as cell death and H2O2 accumulation, preceded by 3-4 days the appearance of visible symptoms. An effective dose of ozone stomatal flux for visible leaf damages was found around 1.33 mmol O3 m−2. Significant linear dose-response relationships were obtained between accumulated fluxes and optical indices (PRI, NDI, ΔF/Fm). The negative effects on photosynthesis reduced plant productivity, affecting the number of pods and seeds, but not seed weight. These results, besides contributing to the development of a flux-based ozone risk assessment for crops in Europe, highlight the potentiality of reflectance measurements for the early detection of ozone stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号