首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   7篇
  国内免费   1篇
安全科学   2篇
废物处理   17篇
环保管理   26篇
综合类   7篇
基础理论   29篇
污染及防治   17篇
评价与监测   7篇
社会与环境   3篇
  2023年   2篇
  2021年   3篇
  2020年   1篇
  2019年   7篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   4篇
  2013年   8篇
  2012年   8篇
  2011年   3篇
  2010年   6篇
  2009年   8篇
  2008年   8篇
  2007年   7篇
  2006年   5篇
  2005年   7篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2000年   3篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1985年   1篇
  1981年   1篇
  1959年   1篇
  1957年   1篇
排序方式: 共有108条查询结果,搜索用时 0 毫秒
11.
Using a new set of landscape indicator data generated by the U.S.EPA, and a comprehensive breeding bird database from the National Breeding Bird Survey, we evaluated associations between breeding bird richness and landscape characteristics across the entire mid-Atlantic region of the United States. We evaluated how these relationships varied among different groupings (guilds) of birds based on functional, structural, and compositional aspects of individual species demographics. Forest edge was by far the most important landscape attribute affecting the richness of the lumped specialist and generalist guilds; specialist species richness was negatively associated with forest edge and generalist richness was positively associated with forest edge. Landscape variables (indicators) explained a greater proportion of specialist species richness than the generalist guild (46% and 31%, respectively). The lower value in generalists may reflect finer-scale distributions of open habitat that go undetected by the Landsat satellite, open habitats created by roads (the areas from which breeding bird data are obtained), and the lumping of a wide variety of species into the generalist category. A further breakdown of species into 16 guilds showed considerable variation in the response of breeding birds to landscape conditions; forest obligate species had the strongest association with landscape indicators measured in this study (55% of the total variation explained) and forest generalists and open ground nesters the lowest (17% of the total variation explained). The variable response of guild species richness to landscape pattern suggests that one must consider species' demographics when assessing the consequences of landscape change on breeding birds.  相似文献   
12.
Chlorinated ethenes such as trichloroethene (TCE), cis‐1,2‐dichloroethene (cis‐1,2‐DCE), and vinyl chloride along with per‐ and polyfluoroalkyl substances (PFAS) have been identified as chemicals of concern in groundwater; with many of the compounds being confirmed as being carcinogens or suspected carcinogens. While there are a variety of demonstrated in‐situ technologies for the treatment of chlorinated ethenes, there are limited technologies available to treat PFAS in groundwater. At a former industrial site shallow groundwater was impacted with TCE, cis‐1,2‐DCE, and vinyl chloride at concentrations up to 985, 258, and 54 µg/L, respectively. The groundwater also contained maximum concentrations of the following PFAS: 12,800 ng/L of perfluoropentanoic acid, 3,240 ng/L of perfluorohexanoic acid, 795 ng/L of perfluorobutanoic acid, 950 ng/L of perfluorooctanoic acid, and 2,140 ng/L of perfluorooctanesulfonic acid. Using a combination of adsorption, biotic, and abiotic degradation in situ remedial approaches, the chemicals of concern were targeted for removal from the groundwater with adsorption being utilized for PFAS whereas adsorption, chemical reduction, and anaerobic biodegradation were used for the chlorinated ethenes. Sampling of the groundwater over a 24‐month period indicated that the detected PFAS were treated to either their detection, or below the analytical detection limit over the monitoring period. Postinjection results for TCE, cis‐1,2‐DCE, and vinyl chloride indicated that the concentrations of the three compounds decreased by an order of magnitude within 4 months of injection, with TCE decreasing to below the analytical detection limit over the 24‐month monitoring period. Cis‐1,2‐DCE, and vinyl chloride concentrations decreased by over 99% within 8 months of injections, remaining at or below these concentrations during the 24‐month monitoring period. Analyses of Dehalococcoides, ethene, and acetylene over time suggest that microbiological and reductive dechlorination were occurring in conjunction with adsorption to attenuate the chlorinated ethenes and PFAS within the aquifer. Analysis of soil cores collected pre‐ and post‐injection, indicated that the distribution of the colloidal activated carbon was influenced by small scale heterogeneities within the aquifer. However, all aquifer samples collected within the targeted injection zone contained total organic carbon at concentrations at least one order of magnitude greater than the preinjection total organic carbon concentrations.  相似文献   
13.
Synthetic musk fragrances (SMFs) have been shown to be micropollutants in various aquatic and groundwater systems, often occurring at microgram per liter concentrations. Studies have shown that the most commonly detected SMFs in water are nitro musks and polycyclic musks. The SMFs are typically introduced into the environment in continuous streams such as from wastewater and land application of wastewater or sludge generated during wastewater treatment. Various studies for the treatment of SMFs have been undertaken for wastewater but studies for the treatment of SMFs in groundwater are limited, especially for in situ treatment. A pilot‐scale test was conducted to determine if the use of colloidal activated carbon (CAC) could effectively reduce dissolved concentrations of nitro and polycyclic synthetic musk compounds including musk xylene, musk ketone, galaxolide, and tonalide. The pilot test was carried out downgradient of a septic system in Central Canada where a series of nitrification and denitrification reactions are occurring in an unconfined aquifer. A 10‐weight percent CAC solution was injected into a series of temporary direct push injection points to target the synthetic musk plume. The plume contained galaxolide and tonalide concentrations up to 687 and 187 nanograms per liter (ng/L), respectively, while the concentrations of musk ketone and musk xylene were below the method detection limit (20 ng/L). A total of 13,950 liters of CAC solution was injected during one injection event. The pilot test results indicated that the CAC was effectively delivered to the target injection zone resulting in an increase in total organic carbon concentrations within the saturated soil greater than two orders of magnitude compared to the background concentrations. Analyses of the groundwater chemistry before and post‐injection indicated that the CAC had no detrimental impact on the groundwater quality while reducing the concentration of dissolved galaxolide and tonalide within the plume to below the method detection limits within 51 days of injection with the exception of two of the 14 wells monitored which had galaxolide and tonalide concentrations up to 78 and 35 ng/L. Within 6 months of application, the concentrations of galaxolide and tonalide had decreased to below the method detection limits. Subsequent monitoring of the groundwater quality over a one‐year period failed to detect galaxolide and tonalide, suggesting that the CAC was effective in attenuating the galaxolide and tonalide.  相似文献   
14.
A pilot‐scale test was conducted in a saline aquifer to determine if a petroleum hydrocarbon (PHC) plume containing benzene (B), toluene (T), ethylbenzene (E), xylenes (X), methyl tert‐butyl ether (MTBE), and tert‐butyl alcohol (TBA) could be treated effectively using a sequential treatment approach that employed in situ chemical oxidation (ISCO) and enhanced bioremediation (EBR). Chemical oxidants, such as persulfate, have been shown to be effective in reducing dissolved concentrations of BTEX (B + T + E + X) and additives such as MTBE and TBA in a variety of geochemical environments including saline aquifers. However, the lifespan of the oxidants in saline environments tends to be short‐lived (i.e., hours to days) with their effectiveness being limited by poor delivery, inefficient consumption by nontargeted species, and back‐diffusion processes. Similarly, the addition of electron acceptors has also been shown to be effective at reducing BTEX and associated additives in saline groundwater through EBR, however EBR can be limited by various factors similar to ISCO. To minimize the limitations of both approaches, a pilot test was carried out in a saline unconfined PHC‐impacted aquifer to evaluate the performance of an engineered, combined remedy that employed both approaches in a sequence. The PHC plume had total BTEX, MTBE, and TBA concentrations of up to 4,584; 55,182; and 1,880 μg/L, respectively. The pilot test involved injecting 13,826 L of unactivated persulfate solution (19.4 weight percent (wt.%) sodium persulfate (Na2S2O8) solution into a series of injection wells installed within the PHC plume. Parameters monitored over a 700‐day period included BTEX, MTBE, TBA, sulfate, and sulfate isotope concentrations in the groundwater, and carbon and hydrogen isotopes in benzene and MTBE in the groundwater. The pilot test data indicated that the BTEX, MTBE, and TBA within the PHC plume were treated over time by both chemical oxidation and sulfate reduction. The injection of the unactivated persulfate resulted in short‐term decreases in the concentrations of the BTEX compounds, MTBE, and TBA. The mean total BTEX concentration from the three monitoring wells within the pilot‐test area decreased by up to 91%, whereas MTBE and TBA mean concentrations decreased by up to 39 and 58%, respectively, over the first 50 days postinjection in which detectable concentrations of persulfate remained in groundwater. Concentrations of the BTEX compounds, MTBE, and TBA rebounded at the Day 61 marker, which corresponded to no persulfate being detected in the groundwater. Subsequent monitoring of the groundwater revealed that the concentrations of BTEX continued to decrease with time suggesting that EBR was occurring within the plume. Between Days 51 and 487, BTEX concentrations decreased an additional 84% from the concentration measured on Day 61. Mean concentrations of MTBE showed a reduction during the EBR phase of remediation of 33% while the TBA concentration appeared to decrease initially but then increased as the sulfate concentration decreased as a result of MTBE degradation. Isotope analyses of dissolved sulfate (34S and 18O), and compound‐specific isotope analysis (CSIA) of benzene and MTBE (13C and 2H) supported the conclusions that ISCO and EBR processes were occurring at different stages and locations within the plume over time.  相似文献   
15.
The release of P from lake sediments, which occurs as a part of internal loading, may contribute a significant portion of the total P load to a lake. Phosphorus release rates from sediments in Spring Lake, Michigan, and the degree to which alum reduces P release from these sediments, were investigated during the summer of 2003. Triplicate sediment cores were sampled from four sites in the lake, and exposed to one of four treatments in the laboratory: (i) aerobic water column/alum, (ii) aerobic water column/no alum, (iii) anaerobic water column/alum, or (iv) anaerobic water column/no alum. Total P (TP) release rates were virtually undetectable in the alum treatments (both aerobic and anaerobic). Low, but detectable, release rates were measured in the aerobic/no alum treatment. The highest release rates were measured in the anaerobic/no alum treatments, and ranged from 1.6 to 29.5 mg P m(-2) d(-1) depending on how the calculations were derived. These fluxes translated to mean internal loads that ranged between 2.7 (low range) and 6.4 (high range) Mg yr(-1) when extrapolated to a whole-lake basis. Internal P loads accounted for between 55 and 65% of the total P load to Spring Lake. Although alum is a potentially effective means of reducing the sediment source of P, there is considerable uncertainty in how long an alum treatment would remain effective in this system given the current rates of external loading and the lack of information on wind-wave action and bioturbation in Spring Lake.  相似文献   
16.
Zoning and applying Limits of Acceptable Change (LAC) are two promising strategies for managing tourism in Marine Protected Areas (MPAs). Typically, these management strategies require the collection and integration of ecological and socioeconomic data. This problem is illustrated by a case study of Koh Chang National Marine Park, Thailand. Biophysical surveys assessed coral communities in the MPA to derive indices of reef diversity and vulnerability. Social surveys assessed visitor perceptions and satisfaction with conditions encountered on snorkelling tours. Notably, increased coral mortality caused a significant decrease in visitor satisfaction. The two studies were integrated to prescribe zoning and “Limits of Acceptable Change” (LAC). As a biophysical indicator, the data suggest a LAC value of 0.35 for the coral mortality index. As a social indicator, the data suggest that a significant fraction of visitors would find a LAC value of under 30 snorkellers per site as acceptable. The draft zoning plan prescribed four different types of zones: (I) a Conservation Zone with no access apart from monitoring or research; (II) Tourism Zones with high tourism intensities at less vulnerable reefs; (III) Ecotourism zones with a social LAC standard of <30 snorkellers per site, and (IV) General Use Zones to meet local artisanal fishery needs. This study illustrates how ecological and socioeconomic field studies in MPAs can be integrated to craft zoning plans addressing multiple objectives.  相似文献   
17.
The Southeastern Aerosol Research and Characterization Study (SEARCH) was implemented in 1998-1999 to provide data and analyses for the investigation of the sources, chemical speciation, and long-term trends of fine particulate matter (PM2.5) and coarse particulate matter (PM10-2.5) in the Southeastern United States. This work is an initial analysis of 5 years (1999-2003) of filter-based PM2.5 and PM10-2.5 data from SEARCH. We find that annual PM2.5 design values were consistently above the National Ambient Air Quality Standards (NAAQS) 15 microg/m3 annual standard only at monitoring sites in the two largest urban areas (Atlanta, GA, and North Birmingham, AL). Other sites in the network had annual design values below the standard, and no site had daily design values above the NAAQS 65 microg/m3 daily standard. Using a particle composition monitor designed specifically for SEARCH, we found that volatilization losses of nitrate, ammonium, and organic carbon must be accounted for to accurately characterize atmospheric particulate matter. In particular, the federal reference method for PM2.5 underestimates mass by 3-7% as a result of these volatilization losses. Organic matter (OM) and sulfate account for approximately 60% of PM2.5 mass at SEARCH sites, whereas major metal oxides (MMO) and unidentified components ("other") account for > or = 80% of PM10-2.5 mass. Limited data suggest that much of the unidentified mass in PM10-2.5 may be OM. For paired comparisons of urban-rural sites, differences in PM2.5 mass are explained, in large part, by higher OM and black carbon at the urban site. For PM10, higher urban concentrations are explained by higher MMO and "other." Annual means for PM2.5 and PM10-2.5 mass and major components demonstrate substantial declines at all of the SEARCH sites over the 1999-2003 period (10-20% in the case of PM2.5, dominated by 14-20% declines in sulfate and 11-26% declines in OM, and 14-25% in the case of PM10-2.5, dominated by 17-30% declines in MMO and 14-31% declines in "other"). Although declining national emissions of sulfur dioxide and anthropogenic carbon may account for a portion of the observed declines, additional investigation will be necessary to establish a quantitative assessment, especially regarding trends in local and regional emissions, primary carbon emissions, and meteorology.  相似文献   
18.
Understanding mechanisms influencing the movement paths of animals is essential for comprehending behavior and accurately predicting use of travel corridors. In Yellowstone National Park (USA), the effects of roads and winter road grooming on bison (Bison bison) travel routes and spatial dynamics have been debated for more than a decade. However, no rigorous studies have been conducted on bison spatial movement patterns. We collected 121 380 locations from 14 female bison with GPS collars in central Yellowstone to examine how topography, habitat type, roads, and elevation affected the probability of bison travel year-round. We also conducted daily winter bison road use surveys (2003-2005) to quantify how topography and habitat type influenced spatial variability in the amount of bison road travel. Using model comparison techniques, we found the probability of bison travel and spatial distribution of travel locations were affected by multiple topographic and habitat type attributes including slope, landscape roughness, habitat type, elevation, and distances to streams, foraging areas, forested habitats, and roads. Streams were the most influential natural landscape feature affecting bison travel, and results suggest the bison travel network throughout central Yellowstone is spatially defined largely by the presence of streams that connect foraging areas. Also, the probability of bison travel was higher in regions of variable topography that constrain movements, such as in canyons. Pronounced travel corridors existed both in close association with roads and distant from any roads, and results indicate that roads may facilitate bison travel in certain areas. However, our findings suggest that many road segments used as travel corridors are overlaid upon natural travel pathways because road segments receiving high amounts of bison travel had similar landscape features as natural travel corridors. We suggest that most spatial patterns in bison road travel are a manifestation of general spatial travel trends. Our research offers novel insights into bison spatial dynamics and provides conceptual and analytical frameworks for examining movement patterns of other species.  相似文献   
19.
The field of toxicology has traditionally assessed the risk of contaminants by using laboratory experiments and a range of pesticide concentrations that are held constant for short periods of time (1-4 days). From these experiments, one can estimate the concentration that causes no effect on survival. However, organisms in nature frequently experience multiple, applications of pesticides over time rather than a single constant concentration. In addition, organisms are embedded in ecological communities that can propagate indirect effects through a food web. Using outdoor mesocosms, we examined how low concentrations (10-250 microg/L) of a globally common insecticide (malathion) applied at various amounts, times, and frequencies affected aquatic communities containing zooplankton, phytoplankton, periphyton, and larval amphibians (reared at two densities) for 79 days. All application regimes caused a decline in zooplankton, which initiated a trophic cascade in which there was a bloom in phytoplankton and, in several treatments, a subsequent decline in the competing periphyton. The reduced periphyton had little effect on wood frogs (Rana sylvatica), which have a short time to metamorphosis. However, leopard frogs (Rana pipiens) have a longer time to metamorphosis, and they experienced large reductions in growth and development, which led to subsequent mortality as the environment dried. Hence, malathion (which rapidly breaks down) did not directly kill amphibians, but initiated a trophic cascade that indirectly resulted in substantial amphibian mortality. Importantly, repeated applications of the lowest concentration (a "press treatment" consisting of seven weekly applications of 10 microg/L) caused larger impacts on many of the response variables than single "pulse" applications that were 25 times as great in concentration. These results are not only important because malathion is the most commonly applied insecticide and is found in wetlands, but also because the mechanism underlying the trophic cascade is common to a wide range of insecticides, offering the possibility of general predictions for the way in which many insecticides impact aquatic communities and the populations of larval amphibians.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号