首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3675篇
  免费   60篇
  国内免费   34篇
安全科学   205篇
废物处理   129篇
环保管理   953篇
综合类   344篇
基础理论   893篇
环境理论   7篇
污染及防治   832篇
评价与监测   234篇
社会与环境   140篇
灾害及防治   32篇
  2023年   19篇
  2022年   27篇
  2021年   36篇
  2020年   30篇
  2019年   39篇
  2018年   48篇
  2017年   66篇
  2016年   88篇
  2015年   78篇
  2014年   86篇
  2013年   459篇
  2012年   140篇
  2011年   185篇
  2010年   122篇
  2009年   140篇
  2008年   163篇
  2007年   198篇
  2006年   139篇
  2005年   123篇
  2004年   128篇
  2003年   130篇
  2002年   113篇
  2001年   64篇
  2000年   80篇
  1999年   51篇
  1998年   57篇
  1997年   47篇
  1996年   63篇
  1995年   58篇
  1994年   64篇
  1993年   52篇
  1992年   47篇
  1991年   39篇
  1990年   38篇
  1989年   31篇
  1988年   40篇
  1987年   30篇
  1986年   35篇
  1985年   33篇
  1984年   30篇
  1983年   37篇
  1982年   48篇
  1981年   47篇
  1980年   25篇
  1979年   28篇
  1978年   25篇
  1977年   29篇
  1976年   13篇
  1974年   10篇
  1972年   11篇
排序方式: 共有3769条查询结果,搜索用时 0 毫秒
71.
The major topographic, mesoscale, and urban influences on the wind patterns of the City of São Paulo are characterized using one year of surface wind velocity data observed at 11 surface stations within its urban limits. The data was used to study the diurnal and annual variations of wind velocity and horizontal wind divergence within the city. Results showed that the circulation over the investigated area is dominated by three major factors: sea breeze; mountain-valley circulations; and urban effects, such as roughness, building-barrier, and urban heat island. The sea breeze was found to be the dominant feature of the monthly-averaged diurnal variation of São Paulo surface winds during the eight warmest months of the year. The sea breeze front induces a velocity minimum at the time of its passage and a post-frontal afternoon velocity maximum. Mountain-valley thermal effects on the flow can be seen in the temporal divergence/convergence patterns. These thermal effects tend to be more important during colder months, at night, and when the wind velocities are low. Nighttime downslope convergent flows are present over the city during winter and spring and daytime upslope divergent flows are present over the city during summer months.  相似文献   
72.
Enhanced bioremediation is quickly developing into an economical and viable technology for the remediation of contaminated soils. Until recently, chlorinated organic compounds have proven difficult to bioremediate. Environmentally recalcitrant compounds, such as polychlorinated biphenyls (PCBs) and persistent organic pesticides (POPs) such as dichlorodiphenyl trichloroethane (DDT) have shown to be especially arduous to bioremediate. Recent advances in field‐scale bioremedial applications have indicated that biodegradation of these compounds may be possible. Engineers and scientists at the Savannah River Site (SRS), a major DOE installation near Aiken, South Carolina, are using enhanced bioremediation to remediate soils contaminated with pesticides (DDT and its metabolites, heptachlor epoxide, dieldrin, and endrin) and PCBs. This article reviews the ongoing remediation occurring at the Chemicals, Metals, and Pesticides (CMP) Pits using windrow turners to facilitate microbial degradation of certain pesticides and PCBs. © 2003 Wiley Periodicals, Inc.  相似文献   
73.
In variable environments, organisms are bound to track environmental changes if they are to survive. Most marine mammals and seabirds are colonial, central-place foragers with long-term breeding-site fidelity. When confronted with environmental change, such species are potentially constrained in their ability to respond to these changes. For example, if environmental conditions deteriorate within their limited foraging range, long-lived species favour adult survival and abandon their current breeding effort, which ultimately influences population dynamics. Should poor conditions persist over several seasons, breeding-site fidelity may force animals to continue breeding in low-quality habitats instead of emigrating towards more profitable grounds. We assessed the behavioural response of a site-faithful central-place forager, the Cape gannet Morus capensis, endemic to the Benguela upwelling system, to a rapid shift in the distribution and abundance of its preferred prey, small pelagic shoaling fish. We studied the distribution and the abundance of prey species, and the diet, foraging distribution, foraging effort, energy requirements, and breeding success of gannets at Malgas Island (South Africa) over four consecutive breeding seasons. Facing a rapid depletion of preferred food within their foraging range, Cape gannets initially increased their foraging effort in search of their natural prey. However, as pelagic fish became progressively scarcer, breeding birds resorted to scavenging readily available discards from a nearby demersal fishery. Their chicks cannot survive on such a diet, and during our 4-year study, numbers of breeding birds at the colony decreased by 40% and breeding success of the remaining birds was very low. Such behavioural inflexibility caused numbers of Cape gannets breeding in Namibia to crash by 95% following over-fishing of pelagic fish in the 1970s. In the context of rapid environmental changes, breeding-site fidelity of long-lived species may increase the risk of local or even global extinction, rendering these species particularly vulnerable to global change.  相似文献   
74.
Fire managers are now realizing that wildfires can be beneficial because they can reduce hazardous fuels and restore fire-dominated ecosystems. A software tool that assesses potential beneficial and detrimental ecological effects from wildfire would be helpful to fire management. This paper presents a simulation platform called FLEAT (Fire and Landscape Ecology Assessment Tool) that integrates several existing landscape- and stand-level simulation models to compute an ecologically based measure that describes if a wildfire is moving the burning landscape towards or away from the historical range and variation of vegetation composition. FLEAT uses a fire effects model to simulate fire severity, which is then used to predict vegetation development for 1, 10, and 100 years into the future using a landscape simulation model. The landscape is then simulated for 5000 years using parameters derived from historical data to create an historical time series that is compared to the predicted landscape composition at year 1, 10, and 100 to compute a metric that describes their similarity to the simulated historical conditions. This tool is designed to be used in operational wildfire management using the LANDFIRE spatial database so that fire managers can decide how aggressively to suppress wildfires. Validation of fire severity predictions using field data from six wildfires revealed that while accuracy is moderate (30-60%), it is mostly dictated by the quality of GIS layers input to FLEAT. Predicted 1-year landscape compositions were only 8% accurate but this was because the LANDFIRE mapped pre-fire composition accuracy was low (21%). This platform can be integrated into current readily available software products to produce an operational tool for balancing benefits of wildfire with potential dangers.  相似文献   
75.
The interaction between nitrogen cycling and carbon sequestration is critical in predicting the consequences of anthropogenic increases in atmospheric CO2 (hereafter, Ca). The progressive N limitation (PNL) theory predicts that carbon sequestration in plants and soils with rising Ca may be constrained by the availability of nitrogen in many ecosystems. Here we report on the interaction between C and N dynamics during a four-year field experiment in which an intact C3/C4 grassland was exposed to a gradient in Ca from 200 to 560 micromol/mol. There were strong species effects on decomposition dynamics, with C loss positively correlated and N mineralization negatively correlated with Ca for litter of the C3 forb Solanum dimidiatum, whereas decomposition of litter from the C4 grass Bothriochloa ischaemum was unresponsive to Ca. Both soil microbial biomass and soil respiration rates exhibited a nonlinear response to Ca, reaching a maximum at approximately 440 micromol/mol Ca. We found a general movement of N out of soil organic matter and into aboveground plant biomass with increased Ca. Within soils we found evidence of C loss from recalcitrant soil C fractions with narrow C:N ratios to more labile soil fractions with broader C:N ratios, potentially due to decreases in N availability. The observed reallocation of N from soil to plants over the last three years of the experiment supports the PNL theory that reductions in N availability with rising Ca could initially be overcome by a transfer of N from low C:N ratio fractions to those with higher C:N ratios. Although the transfer of N allowed plant production to increase with increasing Ca, there was no net soil C sequestration at elevated Ca, presumably because relatively stable C is being decomposed to meet microbial and plant N requirements. Ultimately, if the C gained by increased plant production is rapidly lost through decomposition, the shift in N from older soil organic matter to rapidly decomposing plant tissue may limit net C sequestration with increased plant production.  相似文献   
76.
Hines J  Megonigal JP  Denno RF 《Ecology》2006,87(6):1542-1555
Historically, terrestrial food web theory has been compartmentalized into interactions among aboveground or belowground communities. In this study we took a more synthetic approach to understanding food web interactions by simultaneously examining four trophic levels and investigating how nutrient (nitrogen and carbon) and detrital subsidies impact the ability of the belowground microbial community to alter the abundance of aboveground arthropods (herbivores and predators) associated with the intertidal cord grass Spartina alterniflora. We manipulated carbon, nitrogen, and detrital resources in a field experiment and measured decomposition rate, soil nitrogen pools, plant biomass and quality, herbivore density, and arthropod predator abundance. Because carbon subsidies impact plant growth only indirectly (microbial pathways), whereas nitrogen additions both directly (plant uptake) and indirectly (microbial pathways) impact plant primary productivity, we were able to assess the effect of both belowground soil microbes and nutrient availability on aboveground herbivores and their predators. Herbivore density in the field was suppressed by carbon supplements. Carbon addition altered soil microbial dynamics (net potential ammonification, litter decomposition rate, DON [dissolved organic N] concentration), which limited inorganic soil nitrogen availability and reduced plant size as well as predator abundance. Nitrogen addition enhanced herbivore density by increasing plant size and quality directly by increasing inorganic soil nitrogen pools, and indirectly by enhancing microbial nitrification. Detritus adversely affected aboveground herbivores mainly by promoting predator aggregation. To date, the effects of carbon and nitrogen subsidies on salt marshes have been examined as isolated effects on either the aboveground or the belowground community. Our results emphasize the importance of directly addressing the soil microbial community as a factor that influences aboveground food web structure by affecting plant size and aboveground plant nitrogen.  相似文献   
77.
78.
79.
The herbicide propanil, a synthetic anilide, was discovered in 1957 to control grasses and broad-leaf weeds in rice fields. It has been found to disrupt the electron transport chain by inhibiting the photosystem II, thus impacting plant growth. In the environment, photolysis represents a major degradation pathway, whereas volatilization is not a major route of dissipation from either water or moist soils. Propanil is rapidly degraded by microbes into the major degradation product 3,4-dichloroaniline. This degradation product has been highly detected in both groundwater and surface waters throughout the world. Propanil has been found to adversely impact many non-target organisms. It is toxic to some early life-stage aquatic organisms, in addition to being moderately toxic to the water flea (Ceriodaphnia dubia) and rainbow trout. In addition, it has been reported to pose a high acute and long-term risk to birds. In plants, growth rates are highly impacted; however, some plant species are becoming resistant to propanil.  相似文献   
80.
Research on urban insect pollinators is changing views on the biological value and ecological importance of cities. The abundance and diversity of native bee species in urban landscapes that are absent in nearby rural lands evidence the biological value and ecological importance of cities and have implications for biodiversity conservation. Lagging behind this revised image of the city are urban conservation programs that historically have invested in education and outreach rather than programs designed to achieve high‐priority species conservation results. We synthesized research on urban bee species diversity and abundance to determine how urban conservation could be repositioned to better align with new views on the ecological importance of urban landscapes. Due to insect pollinators’ relatively small functional requirements—habitat range, life cycle, and nesting behavior—relative to larger mammals, we argue that pollinators put high‐priority and high‐impact urban conservation within reach. In a rapidly urbanizing world, transforming how environmental managers view the city can improve citizen engagement and contribute to the development of more sustainable urbanization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号