首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308篇
  免费   5篇
安全科学   24篇
废物处理   5篇
环保管理   44篇
综合类   57篇
基础理论   82篇
污染及防治   67篇
评价与监测   20篇
社会与环境   9篇
灾害及防治   5篇
  2023年   6篇
  2022年   4篇
  2021年   14篇
  2020年   2篇
  2019年   6篇
  2018年   6篇
  2017年   11篇
  2016年   24篇
  2015年   10篇
  2014年   4篇
  2013年   27篇
  2012年   17篇
  2011年   16篇
  2010年   10篇
  2009年   9篇
  2008年   18篇
  2007年   17篇
  2006年   17篇
  2005年   2篇
  2004年   10篇
  2003年   11篇
  2002年   10篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1996年   4篇
  1994年   5篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1964年   1篇
  1962年   1篇
  1955年   1篇
  1927年   1篇
  1921年   2篇
排序方式: 共有313条查询结果,搜索用时 15 毫秒
101.
Karlson K  Bonsdorff E  Rosenberg R 《Ambio》2007,36(2-3):161-167
This article focuses on the ecological role of benthic macrofauna on nutrient dynamics and benthic-pelagic coupling in the Baltic Sea with relation to eutrophication. Generally, benthic macrofaunal activities have large effects on sediment biogeochemistry and often with stimulatory effects on processes that counteract eutrophication, i.e., denitrification and increased phosphorus retention of the sediment. The degree of faunal impact on such processes varies depending on faunal density and functional group composition. The effect of macrofaunal activities on sediment nutrient dynamics can also result in a higher nitrogen: phosporus ratio of the sediments efflux compared with sediments without macrofauna. Increased internal nutrient loading during eutrophication-induced anoxia is suggested to be caused both by altered sediment biogeochemical processes and through reduced or lost bioturbating macrofauna and thereby a reduced stimulatory effect from their activities on natural purification processes of the Baltic Sea ecosystem.  相似文献   
102.
103.
Environmentally sound management of the use of composts in agriculture relies on matching the rate of release of available N from compost-amended soils to the crop demand. To develop such management it is necessary to (i) characterize the properties of composts that control their rates of decomposition and release of N and (ii) determine the optimal amount of composts that should be applied annually to wheat (Triticum aestivum L.). Carbon and N mineralization were measured under controlled conditions to determine compost decomposition rate parameters, and the NCSOIL model was used to derive the organic wastes parameters that control the rates of N and C transformations in the soil. We also characterized the effect of a drying period to estimate the effects of the dry season on C and N dynamics in the soil. The optimized compost parameters were then used to predict mineral N concentration dynamics in a soil-wheat system after successive annual applications of compost. Sewage sludge compost (SSC) and cattle manure compost (CMC) mineralization characteristics showed similar partitioning into two components of differing ease of decomposition. The labile component accounted for 16 to 20% of total C and 11 to 14% of total N, and it decomposed at a rate of 2.4 x 10(-2) d(-1), whereas the resistant pool had a decomposition rate constant of 1.2 to 1.4 x 10(-4) d(-1). The main differences between the two composts resulted from their total C and N and inorganic N contents, which were determined analytically. The long-term effect of a drying period on C and N mineralization was negligible. Use of these optimization results in a simulation of compost mineralization under a wheat crop, with a modified plant-effect version of the NCSOIL model, enabled us to evaluate the effects of the following factors on the C and N dynamics in soil: (i) soil temperature, (ii) mineral N uptake by plants, and (iii) release of very labile organic C in root exudates. This labile organic C enhanced N immobilization following application, and so decreased the N available for uptake by plants.  相似文献   
104.
The overall objective of the present study was to determine the loading limits of composts that should be applied annually to irrigated wheat. We conducted a container experiment in a greenhouse during four years. It included eight treatments: sewage sludge compost (SSC) and cattle manure compost (CMC), each applied annually to a sandy soil, at rates equivalent to 3, 6, and 12 kg m(-2), and two controls, one fertilized and one unfertilized. Total dry matter (DM), grain production, and the amount of N, P, and K taken up by plants increased with increasing compost rate. Nitrogen uptake by the plants of the fertilized control was much higher than by the plants of the highest compost rate. Phosphorus and K uptake by the plants amended with the highest compost rate was much higher than by the fertilized control plants. Inorganic N quantity in the soil increased with increasing compost rate and with successive applications. The net N mineralization during the first year of wheat growth was very low, less than 3.5% of the applied organic N under all compost application rates. The contribution of the organic N mineralization increased during the second and third years. Most of the N increase in the compost treatment was found in the upper layer of 0 to 15 cm, whereas in the fertilized treatment N accumulated from the surface to the bottom of the container, 0 to 55 cm. The successive application of high rates of composts resulted in P and K accumulation in the soil profile.  相似文献   
105.
This survey‐based field study of 257 service employees developed and tested a model of differences in the organizational citizenship behavior of full‐time and part‐time employees based on social exchange theory. Questionnaire data from matched pairs of employees and their supervisors demonstrated that part‐time employees exhibited less helping organizational citizenship behavior than full‐time employees, but there was no difference in their voice behavior. We also predicted that both preferred work status (an individual factor) and organizational culture (a contextual factor) would moderate the relationships between work status and citizenship. For helping, results demonstrated that preferred status mattered more to part‐time workers than to full‐time. For voice, preferred work status was equally important to part‐time and full‐time workers, such that voice was high only when actual status matched preferred status. Contrary to our expectations, work status made more of a difference in both helping and voice in less bureaucratic organizations. We discuss the implications of work status for social exchange relationships, differences in the social exchange costs and benefits of helping compared to voice, and ramifications of our findings for future research. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
106.
Parachnowitsch AL  Caruso CM 《Ecology》2008,89(7):1802-1810
Herbivores that oviposit in flowers of animal-pollinated plants depend on pollinators for seed production and are therefore expected to choose flowers that attract pollinators. This provides a mechanism by which seed herbivores and pollinators could impose conflicting selection on floral traits. We measured phenotypic selection on floral traits of Lobelia siphilitica (Lobeliaceae) via female fitness to determine the relative strength of selection by pollinators and a specialist predispersal seed herbivore. We were able to attribute selection on flowering phenology to the herbivores. However, no selection could be attributed to pollinators, resulting in no conflicting selection on floral traits. Unlike pollinators, whose preference for certain floral traits does not always translate into higher fitness, any discrimination by seed herbivores is likely to decrease fitness of the preferred floral phenotype. Thus predispersal seed herbivores may be a significant agent of selection on floral traits.  相似文献   
107.
108.
The international development community is off-track from meeting targets for alleviating global malnutrition. Meanwhile, there is growing consensus across scientific disciplines that fish plays a crucial role in food and nutrition security. However, this ‘fish as food’ perspective has yet to translate into policy and development funding priorities. We argue that the traditional framing of fish as a natural resource emphasizes economic development and biodiversity conservation objectives, whereas situating fish within a food systems perspective can lead to innovative policies and investments that promote nutrition-sensitive and socially equitable capture fisheries and aquaculture. This paper highlights four pillars of research needs and policy directions toward this end. Ultimately, recognizing and working to enhance the role of fish in alleviating hunger and malnutrition can provide an additional long-term development incentive, beyond revenue generation and biodiversity conservation, for governments, international development organizations, and society more broadly to invest in the sustainability of capture fisheries and aquaculture.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01451-4) contains supplementary material, which is available to authorized users.  相似文献   
109.
Some of the most spectacular visual signals found in the animal kingdom are based on dietarily derived carotenoid pigments (which cannot be produced de novo), with a general assumption that carotenoids are limited resources for wild organisms, causing trade-offs in allocation of carotenoids to different physiological functions and ornamentation. This resource trade-off view has been recently questioned, since the efficiency of carotenoid processing may relax the trade-off between allocation toward condition or ornamentation. This hypothesis has so far received little exploratory support, since studies of digestive efficiency of wild animals are limited due to methodological difficulties. Recently, a method for quantifying the percentage of fat in fecal samples to measure digestive efficiency has been developed in birds. Here, we use this method to test if the intensity of the carotenoid-based coloration predicts digestive efficiency in a wild bird, the house finch (Haemorhous mexicanus). The redness of carotenoid feather coloration (hue) positively predicted digestion efficiency, with redder birds being more efficient at absorbing fats from seeds. We show for the first time in a wild species that digestive efficiency predicts ornamental coloration. Though not conclusive due to the correlative nature of our study, these results strongly suggest that fat extraction might be a crucial but overlooked process behind many ornamental traits.  相似文献   
110.
Soil microbes in temperate forest ecosystems are able to cycle several hundreds of kilograms of N per hectare per year and are therefore of paramount importance for N retention. Belowground C allocation by trees is an important driver of seasonal microbial dynamics and may thus directly affect N transformation processes over the course of the year. Our study aimed at unraveling plant controls on soil N cycling in a temperate beech forest at a high temporal resolution over a time period of two years, by investigating the effects of tree girdling on microbial N turnover. In both years of the experiment, we discovered (1) a summer N mineralization phase (between July and August) and (2) a winter N immobilization phase (November-February). The summer mineralization phase was characterized by a high N mineralization activity, low microbial N uptake, and a subsequent high N availability in the soil. During the autumn/winter N immobilization phase, gross N mineralization rates were low, and microbial N uptake exceeded microbial N mineralization, which led to high levels of N in the microbial biomass and low N availability in the soil. The observed immobilization phase during the winter may play a crucial role for ecosystem functioning, since it could protect dissolved N that is produced by autumn litter degradation from being lost from the ecosystem during the phase when plants are mostly inactive. The difference between microbial biomass N levels in winter and spring equals 38 kg N/ha and may thus account for almost one-third of the annual plant N demand. Tree girdling strongly affected annual N cycling: the winter N immobilization phase disappeared in girdled plots (microbial N uptake and microbial biomass N were significantly reduced, while the amount of available N in the soil solution was enhanced). This was correlated to a reduced fungal abundance in autumn in girdled plots. By releasing recently fixed photosynthates to the soil, plants may thus actively control the annual microbial N cycle. Tree belowground C allocation increases N accumulation in microorganisms during the winter which may ultimately feed back on plant N availability in the following growing season.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号