首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   0篇
安全科学   5篇
废物处理   3篇
环保管理   6篇
综合类   154篇
基础理论   22篇
污染及防治   49篇
评价与监测   6篇
社会与环境   4篇
  2014年   3篇
  2013年   10篇
  2012年   4篇
  2011年   3篇
  2010年   3篇
  2009年   6篇
  2008年   9篇
  2007年   12篇
  2006年   6篇
  2004年   4篇
  2003年   4篇
  2002年   5篇
  2000年   2篇
  1999年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1984年   2篇
  1979年   5篇
  1978年   7篇
  1976年   2篇
  1969年   3篇
  1966年   7篇
  1965年   3篇
  1964年   8篇
  1963年   8篇
  1962年   4篇
  1961年   9篇
  1960年   3篇
  1959年   3篇
  1958年   6篇
  1957年   6篇
  1956年   9篇
  1955年   7篇
  1954年   8篇
  1953年   6篇
  1952年   4篇
  1951年   3篇
  1950年   2篇
  1947年   3篇
  1941年   2篇
  1939年   2篇
  1932年   2篇
  1931年   3篇
  1930年   2篇
  1926年   2篇
  1922年   2篇
  1917年   2篇
  1914年   4篇
  1913年   3篇
排序方式: 共有249条查询结果,搜索用时 46 毫秒
41.
A new reactive transport modelling approach and examples of its application are presented, dealing with the impact of sorption/desorption kinetics on the spreading of solutes, e.g. organic contaminants, in groundwater. Slow sorption/desorption is known from the literature to be strongly responsible for the retardation of organic contaminants. The modelling concept applied in this paper quantifies sorption/desorption kinetics by an intra-particle diffusion approach. According to this idea, solute uptake by or release from the aquifer material is modelled at small scale by a "slow" diffusion process where the diffusion coefficient is reduced as compared to the aqueous diffusion coefficient due to (i) the size and shape of intra-particle pores and (ii) retarded transport of solutes within intra-particle pores governed by a nonlinear sorption isotherm. This process-based concept has the advantage of requiring only measurable model parameters, thus avoiding fitting parameters like first-order rate coefficients.In addition, the approach presented here allows for modelling of slow sorption/desorption in lithologically nonuniform media. Therefore, it accounts for well-known experimental findings indicating that sorptive properties depend on (i) the grain size distribution of the aquifer material and (ii) the lithological composition (e.g. percentage of quartz, sandstone, limestone, etc.) of each grain size fraction. The small-scale physico-chemical model describing sorption/desorption is coupled to a large-scale model of groundwater flow and solute transport. Consequently, hydraulic heterogeneities may also be considered by the overall model. This coupling is regarded as an essential prerequisite for simulating field-scale scenarios which will be addressed by a forthcoming publication.This paper focuses on mathematical model formulation, implementation of the numerical code and lab-scale model applications highlighting the sorption and desorption behavior of an organic contaminant (Phenanthrene) with regard to three lithocomponents exhibiting different sorptive properties. In particular, it is shown that breakthrough curves (BTCs) for lithologically nonuniform media cannot be obtained via simple arithmetic averaging of breakthrough curves for lithologically uniform media. In addition, as no analytical solutions are available for model validation purposes, simulation results are compared to measurements from lab-scale column experiments. The model results indicate that the new code can be regarded as a valuable tool for predicting long-term contaminant uptake or release, which may last for several hundreds of years for some lithocomponents. In particular, breakthrough curves simulated by pure forward modelling reproduce experimental data much better than a calibrated standard first-order kinetics reactive transport model, thus indicating that the new approach is of high quality and may be advantageously used for supporting the design of remediation strategies at contaminated sites where some lithocomponents and/or grain size classes may provide a long-term pollutant source.  相似文献   
42.
43.
44.
45.
46.
47.
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号