首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   1篇
安全科学   3篇
环保管理   18篇
综合类   14篇
基础理论   19篇
污染及防治   16篇
评价与监测   7篇
社会与环境   2篇
灾害及防治   1篇
  2023年   1篇
  2019年   3篇
  2016年   2篇
  2013年   7篇
  2011年   4篇
  2010年   2篇
  2008年   6篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1964年   1篇
  1962年   1篇
  1955年   1篇
  1927年   1篇
  1921年   2篇
排序方式: 共有80条查询结果,搜索用时 109 毫秒
31.
Karlson K  Bonsdorff E  Rosenberg R 《Ambio》2007,36(2-3):161-167
This article focuses on the ecological role of benthic macrofauna on nutrient dynamics and benthic-pelagic coupling in the Baltic Sea with relation to eutrophication. Generally, benthic macrofaunal activities have large effects on sediment biogeochemistry and often with stimulatory effects on processes that counteract eutrophication, i.e., denitrification and increased phosphorus retention of the sediment. The degree of faunal impact on such processes varies depending on faunal density and functional group composition. The effect of macrofaunal activities on sediment nutrient dynamics can also result in a higher nitrogen: phosporus ratio of the sediments efflux compared with sediments without macrofauna. Increased internal nutrient loading during eutrophication-induced anoxia is suggested to be caused both by altered sediment biogeochemical processes and through reduced or lost bioturbating macrofauna and thereby a reduced stimulatory effect from their activities on natural purification processes of the Baltic Sea ecosystem.  相似文献   
32.
Environmentally sound management of the use of composts in agriculture relies on matching the rate of release of available N from compost-amended soils to the crop demand. To develop such management it is necessary to (i) characterize the properties of composts that control their rates of decomposition and release of N and (ii) determine the optimal amount of composts that should be applied annually to wheat (Triticum aestivum L.). Carbon and N mineralization were measured under controlled conditions to determine compost decomposition rate parameters, and the NCSOIL model was used to derive the organic wastes parameters that control the rates of N and C transformations in the soil. We also characterized the effect of a drying period to estimate the effects of the dry season on C and N dynamics in the soil. The optimized compost parameters were then used to predict mineral N concentration dynamics in a soil-wheat system after successive annual applications of compost. Sewage sludge compost (SSC) and cattle manure compost (CMC) mineralization characteristics showed similar partitioning into two components of differing ease of decomposition. The labile component accounted for 16 to 20% of total C and 11 to 14% of total N, and it decomposed at a rate of 2.4 x 10(-2) d(-1), whereas the resistant pool had a decomposition rate constant of 1.2 to 1.4 x 10(-4) d(-1). The main differences between the two composts resulted from their total C and N and inorganic N contents, which were determined analytically. The long-term effect of a drying period on C and N mineralization was negligible. Use of these optimization results in a simulation of compost mineralization under a wheat crop, with a modified plant-effect version of the NCSOIL model, enabled us to evaluate the effects of the following factors on the C and N dynamics in soil: (i) soil temperature, (ii) mineral N uptake by plants, and (iii) release of very labile organic C in root exudates. This labile organic C enhanced N immobilization following application, and so decreased the N available for uptake by plants.  相似文献   
33.
The overall objective of the present study was to determine the loading limits of composts that should be applied annually to irrigated wheat. We conducted a container experiment in a greenhouse during four years. It included eight treatments: sewage sludge compost (SSC) and cattle manure compost (CMC), each applied annually to a sandy soil, at rates equivalent to 3, 6, and 12 kg m(-2), and two controls, one fertilized and one unfertilized. Total dry matter (DM), grain production, and the amount of N, P, and K taken up by plants increased with increasing compost rate. Nitrogen uptake by the plants of the fertilized control was much higher than by the plants of the highest compost rate. Phosphorus and K uptake by the plants amended with the highest compost rate was much higher than by the fertilized control plants. Inorganic N quantity in the soil increased with increasing compost rate and with successive applications. The net N mineralization during the first year of wheat growth was very low, less than 3.5% of the applied organic N under all compost application rates. The contribution of the organic N mineralization increased during the second and third years. Most of the N increase in the compost treatment was found in the upper layer of 0 to 15 cm, whereas in the fertilized treatment N accumulated from the surface to the bottom of the container, 0 to 55 cm. The successive application of high rates of composts resulted in P and K accumulation in the soil profile.  相似文献   
34.
Mehta, Vikram M., Norman J. Rosenberg, and Katherin Mendoza, 2011. Simulated Impacts of Three Decadal Climate Variability Phenomena on Water Yields in the Missouri River Basin. Journal of the American Water Resources Association (JAWRA) 47(1):126‐135. DOI: 10.1111/j.1752‐1688.2010.00496.x Abstract: The Missouri River Basin (MRB) is the largest river basin in the United States (U.S.), and is one of the most important crop and livestock‐producing regions in the world. In a previous study of associations between decadal climate variability (DCV) phenomena and hydro‐meteorological (HM) variability in the MRB, it was found that positive and negative phases of the Pacific Decadal Oscillation (PDO), the tropical Atlantic sea‐surface temperature gradient variability (TAG), and the west Pacific warm pool (WPWP) temperature variability were significantly associated with decadal variability in precipitation and 2‐meter air temperature in the MRB, with combinations of various phases of these DCV phenomena associated with drought, flood, or neutral HM conditions. Here, we report on a methodology developed and applied to assess whether the aforementioned DCVs directly affect the hydrology of the MRB. The Hydrologic Unit Model of the U.S. (HUMUS) was used to simulate water yields in response to realistic values of the PDO, TAG, and WPWP at 75 widely distributed, eight‐digit hydrologic unit areas within the MRB. HUMUS driven by HM anomalies in both the positive and negative phases of the PDO and TAG resulted in major impacts on water yields, as much as ±20% of average water yield in some locations. Impacts of the WPWP were smaller. The combined and cumulative effects of these DCV phenomena on the MRB HM and water availability can be dramatic with important consequences for the MRB.  相似文献   
35.
The seaweeds Gracilaria foliifera (Rhodophyceae) and Ulva sp. (Chlorophyceae) were grown in an outdoor continuous-flow system at both ambient incident light (I0) and 0.13 I0. During the winter, both species accumulated substantial soluble nitrogen reserves (up to 1020 g-at N·g dry wt-1 in G. foliifera and 630 g-at N·g dry wt-1 in Ulva sp.). The rate at which these N reserves were depleted was proportional to the growth rate. Seaweeds grown at 0.13 I0 had lower growth rates and higher levels of soluble tissue N than plants grown at I0. During the spring-summer growing season, peaks in tissue N followed nutrient peaks in the ambient seawater. Ulva sp. had higher nutrient uptake and growth rates than G. foliifera and showed greater fluctuations in soluble tissue N. This may characterize opportunistic seaweed species with high biomass turnover rates. At I0, the levels of starch (up to 340 mg·g dry wt-1 in G. foliifera and 170 mg·g dry wt-1 in Ulva sp.) were highest during the spring and summer. During this period, fluctuations in starch content were inversely related to growth rate and soluble tissue N. Seaweeds grown at 0.13 I0 did not accumulate starch. Neither species was found to overwinter with starch reserves.  相似文献   
36.
37.
This study simulated crop and water yields in the Missouri River Basin (MRB; 1,371,000 km2), one of the largest river basins in the United States, using the Soil and Water Assessment Tool (SWAT) at a fine resolution of 12‐digit Hydrological Unit Codes (HUCs) using the regionalization calibration approach. Very few studies have simulated the entire MRB, and those that have developed were at a coarser resolution of 8‐digit HUCs and were minimally calibrated. The MRB was first divided into three subbasins and was further divided into eleven regions. A “head watershed” was selected in each region and was calibrated for crop and water yields. The parameters from the calibrated head watershed were extrapolated to other subwatersheds in the region to complete comprehensive spatial calibration. The simulated crop yields at the head watersheds were in close agreement with observed crop yields. Spatial validation of the aggregated crop yields resulted in reasonable predictions for all crops except dryland corn in a few regions. Simulated and observed water yields in head watersheds and also in the validation locations were in close agreement in naturalized streams and poor agreement in streams with high groundwater‐surface water interactions and/or reservoirs found upstream of the gauges. Overall, the SWAT model was able to reasonably capture the hydrological and crop growth dynamics occurring in the basin despite some limitations.  相似文献   
38.
The coast of the Korean peninsula experiences a range of human impacts, including pollution, shipping, reclamation, and aquaculture, that have motivated numerous local studies of macrobenthic organisms. In this paper, 1,492 subtidal stations were compiled from 23 studies (areas) to evaluate environmental quality on a broader scale. A common index in biomonitoring, Shannon–Wiener evenness proportion (SEP), could not incorporate azoic or single-species samples. This shortcoming was overcome by developing an inverse function of SEP (ISEP), which was positively correlated with independent measures of water quality available for nine sites and was not biased by the size of the sampling unit. Additionally, at Shihwa Dike, where samples were collected before and after reinstating a tidal connection with the ocean, ISEP values improved over time, as expected. Thus, it is now possible to assign Korean subtidal sites to seven ISEP “grades” and to use their values and trends to guide coastal management.  相似文献   
39.
The ultrasonographer may be the first physician to suggest the presence of a fetal abnormality. A case of prenatally-detected meconium peritonitis is presented, with sonographic and radio-graphic correlation.  相似文献   
40.
Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta Butcher were studied in response to irradiance fluctuations caused by surface-wave focusing. The experimental conditions simulated the prominent features of the light field (high average irradiance, spectral composition and statistical properties) in the uppermost few meters of the water column under sunny surface conditions. The properties of algae grown under high-frequency fluctuations were compared with control cells grown under constant light at the same average irradiance (800 mol quantam-2s-1). No significant differences were found for a number of parameters, including growth rate, cellular chlorophyll a and pigment ratios, photosynthetic unit size and density of Photosystem I reaction centers, the rate of photosynthesis at the growth irradiance, dark respiration, and in vivo fluorescence of chlorophyll a per cell. Photosynthetic parameters were not affected by whether the incident light for oxygen exchange measurements was fluctuating or constant. This was the case whether the cells had been previously acclimated to either fluctuating or constant irradiance. Such a photosynthetic response indicates that cells are accomplishing a time integration of the fluctuating light. In addition, although D. tertiolecta is capable of dramatically changing its optical properties in response to low or high growth irradiance levels, the refractive index of the cells, the efficiency factors for light absorption and scattering by individual cells, and chlorophyll-specific absorption and scattering coefficients of cell suspensions, were all very similar under high irradiance, whether or not wave focusing was present.Contribution to the program of GIROQ (Groupe Interuniversitaire de Recherches Océanographiques du Québec)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号